• 제목/요약/키워드: 한계변형율

Search Result 76, Processing Time 0.025 seconds

Prediction of Forming Limit Diagram Using Plastic Instability Condition Considered Strain Rate. (변형율 속도를 고려한 소성불안정 조건을 이용한 성형한계선도의 예측)

  • 한규택;강대민;김진욱;백남주
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.58-65
    • /
    • 1990
  • The purpose of this study is to consider the effects of strain rate on the stress-strain behavior of sheet metal at instability. The results and conclusions obtained as follows : 1. As the strain rate increases, the fracture pressure increases and the polar height at fracture decreases. 2. The effect of strain rate on forming limit diagram produces a general lowering of the diagram with increasing strain rate but changes according to materials and strain paths. 3. The forming limit diagram predicted by swift instability theory is comparatively inconsistent with the experimental result at high strain rates, because there is inevitable gap between them.

  • PDF

Application of Porous Medium Theory in Slope Stability Analysis (다공체 이론을 사용한 사면안정해석)

  • 서영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.135-142
    • /
    • 2001
  • 사면안정해석을 위해 다공체(porous medium) 이론이 제시되었다. 다공체 이론은 간극수압, 토질입자 및 간극수의 상호작용을 포함하는 여러 가지 지반관련 문제의 이해에 있어 매우 중요하다. 이러한 상호작용은 토질강도 및 변형에 중요한 영향을 미친다. 압밀 예제로서 이러한 모델의 정확도를 첫째로 검증하였다. 사면안정해석에 있어서 토질의 응력 및 강도는 일반적인 구성모델을 포함한 비선형 유한요소해석을 사용하여 정확히 계산되었다. 사면안정해석은 한계상태를 표시하는 파괴면이 나타날 때까지 점차적인 중력의 증가로 실행되었다. 안전율은 증가시킨 중력과 실제사면 중력의 비로서 계산되었다. 제시된 사면 안정 해석 방법의 자세한 사항은 예제를 통하여 설명되었다.

  • PDF

Study on the Determination of the Maximum Injection Pressure for Groundwater Rechargement (지하수 함양시 최대 주입압력 결정을 위한 연구)

  • Choi, Jin O;Jeong, Hyeon Cheol;Chung, Choong Ki;Kim, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.501-508
    • /
    • 2022
  • Required essential technique is to determine the maximum recharge pressure in the well with condition of non-ground failure for the recovery of the groundwater. Based on the classical soil mechanics, the maximum recharge pressure was estimated with the numerical anlaysis and laboratory triaxial test. In the numerical analysis, the maximum recharge pressure is defined as the ground failure stress. The ground failure of the sand was defined as the piping and the one of the caly was to the undrained failure by the confined pressure increment. In the triaxial test, the recharge pressure in the ground was modified by the back pressure in the specimen. In case of sand, the volume strain was dramatically increased at the 93 % of the maximum back pressure, same meaning of the 0 effective stress state. In case of clay, the only radial volume strain was to reached 1.5 % without failure. Therefore, The maximum recharge pressure could be determined with the numerical analysis and triaxial test.

압축성을 고려한 캘린더 닙 내에서의 열전달 현상에 대한 해석

  • 이학래;박선규
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.11a
    • /
    • pp.117-117
    • /
    • 2000
  • 제지공정의 마지막 단계인 캘린더는 지필의 표면을 평활하게 하고 두께를 감소시켜 균일 하게 하는 역할을 한다. 하지만 캘린더링은 인장강도 둥의 강도적 성질과 불투명도 등 광학 적 성질을 저하시키는 공정이기도 하다. 따라서 캘린더령 공정에 의한 제품 품질의 저하를 극소화하기 위해서는 공정인자의 엄밀한 관리가 요청된다. 캘린더링의 주요 공정인자에는 온도와 압력, 닙 체류시간, 유입지의 함수율, 유입지의 온도 롤의 재질 등이 있다. 이 가운 데 특히 캘린더링 온도와 압력은 주요한 공정 인자이다. 따라서 이들 변수에 의한 캘린더링 공정의 변화를 정확하게 파악하는 것은 매우 중요하다. 캘린더링 공정의 속도와 관련된 닙 체류시간과 유입지의 함수율, 유입지의 온도, 롤의 재질 등은 실제 공정에서 변화시키기 어 려운 반면 온도와 압력은 조절이 비교적 용이한 특정도 지니고 있다. 캘린더링 전후의 종이의 물성 차이는 지필 내부로의 열 침투에 의한 열변형에 따라 크게 달라진다. 셀룰로오스는 유리전이온도 이상으로 가열되면 그 성질이 크게 변화하므로 캘린 더링 시의 온도가 유리전이온도보다 높거나 낮은 경우 캘린더링된 종이의 물성 차이가 크게 달라질 수 밖에 없다. 캘린더령은 비정상상태에서 진행되기 때문에 지펼의 내층보다는 표층 으로부터 순차적으로 열변형이 발생하는 공정이다. 그러므로 지필의 두께 방향으로의 열 침 투 현상의 해석을 통하여 캘린더링 시 유리전이온도가 어느 깊이까지 도달하는가를 파악하 는 것은 캘린더링 공정의 해석에 매우 중요하다. 캘린더링 공정에서 발생하는 열전달현상 해석 시 지필의 압축을 고려하지 않고 비압축성 물질로 가정하는 것은 캘린더링 공정 인자 중 압력에 의한 영향을 제대로 평가하지 못하는 한계를 지니게 된다. 따라서 본 연구에서는 지펼의 압축성을 고려하여 캘린더링 모델을 정립 하고, 이를 토대로 캘린더링 공정 조건에 따른 열 침투 현상을 해석코자 하였으며, 그 방법으 로 수치해석기법을 도입하였다. 또 실제 캘린더링 전후의 두께 변화를 측정하여 유리전이온도 의 도달 깊이와 비교하였다. 지필의 압축 정도는 롤의 직경과 닙 폭을 이용하여 MD 방향으 로 함수화하였으며, 열전달 계수로는 겉보기 값을 사용하였다. 이때 지펼은 균질한 것으로 가 정하였다. 함수율은 유리전이온도를 좌우하는 가장 큰 인자이나 본 연구에서는 항온항습처리 를 통해 유입지의 함수율을 고정시켰으며 캘린더링 시 함수율의 변이는 없다고 가정하였다. 그 결과 열침투깊이가 증가할수록 지필은 보다 변형되기 쉬운 상태가 되어 주어진 압력 조건에 대해 소성변형 정도가 증가하는 것으로 나타났다. 이는 캘린더링 전후에 두께 변화를 측정하여 정량적으로 평가할 수 있었다. 수치해석기법을 통해 같은 압력 조건에서 온도가 증 가함에 따라 혹은 같은 온도 조건에서 압력이 증가함에 따라 지필 내의 유리전이온도의 침투 깊이가 증가함을 알 수 있었으며 이는 캘린더링 전후의 두께 변화의 측정 결과와 일치하였 다. 또 NRT가 증가함에 따라서도 유리전이온도 침투 깊이가 증가하였다.

  • PDF

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.

Stress-Strain Responses of Concrete Confined by FRP Composites (FRP 합성재료에 의하여 구속된 콘크리트의 응력-변형률 응답 예측)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.803-810
    • /
    • 2007
  • An analytical method capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (fiber reinforced polymers) composites in a rational manner is presented. Its underlying idea is that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure, and can be utilized to estimate the load-carrying capacity of concrete by considering the corresponding accumulated damage. Following from this, an elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. The proposed method enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods. Several existing analytical methods that can predict the overall response were also examined and discussed, particularly focusing on the way of considering the volumetric expansion. The results predicted by the proposed and Samaan's bilinear equation models correlated with observed results with a reasonable degree, however it can be judged that the latter is not capable of predicting the response of lateral strains correctly due to incorporating the initial Poisson's ratio and the final converged dilation rate only. Further, the proposed method seems to have greater benefits in other applications by the use of the fundamental principles of mechanics.

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Analysis of Composite Response Based on Microstructure Details (복합재료의 미시특성에 따른 기계적 특성해석)

  • 김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.784-790
    • /
    • 2003
  • Present investigation shows the analysis results for ceramic reinforced metal matrix composite under uniaxial transverse tensile loading. The resulting deformation, the projected damage type, and stress-strain behavior were computed depending on microstructure details such as the type of periodic reinforcement array, and the type of interface bonding. A two-dimensional finite element analysis was conducted based on the unit-cell of square, hexagonal, or diagonal periodic away For composite with strong interface bonding, the transverse stress vs. strain curve was generally increased with the increase of the ceramic volume fraction. For the composite with weakly bonded interface, however, the transverse stress vs. strain curve was reduced against the ceramic volume fraction. The decrease was caused by the interface debonding-induced stiffness reduction of the composite. For the composite of weakly bonded interface, the relative reduction rate in the final limit stress for hexagonal array was larger than that for square array. Outcome of the present study was compared favorably with the published literature data.

Object Recognition using Neural Network (신경회로망을 이용한 물체인식)

  • Kim, Hyoung-Geun;Park, Sung-Kyu;Song, Chull;Choi, Kap-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.197-205
    • /
    • 1992
  • In this paper object recognition using neural network is studied. The recognition is accomplished by matching linear line segments which are formed by local features extracted from the curvature points. Since there is similarities among segments. The boundary of models is not distinct in feature space. Due to these indistinctness the ambiguity of recognition occurs, and the recognition rate becomes degraded according to the limitation of boundary decision capability of neural network for similar of features. Object recognition and to improve recognition rate. Local features are used to represent the object effectively. The validity of the object recognition system is demonstrated by experiments for the occluded and varied objects.

  • PDF

Development of Temperature Compensated Micro Cone by using Fiber Optic Sensor (광섬유를 이용한 온도 보상형 마이크로콘의 개발)

  • Kim, Raehyun;Lee, Woojin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.163-174
    • /
    • 2009
  • Mechanical device using the load cell or strain gage sensor can be influenced by tempearute changes because temperature change can cause a shift in the load cell or straing gage output at zero loading. In this paper, micro cone penetrometers with 1~7mm in diameter, are developed by using an optical fiber sensor (FBG: Fiber Bragg Grating) to compensate the continous temperature change during cone penetration test. Note the temperature compensated method using optical fiber sensor which has hair-size in diameter, and is not affected by environmental conditions because the measured data is the wavelength shifting of the light instead of the intensity of the electric voltage. Temperature effect test shows that the output voltage of strain gage changes and increases with an increase in the temperature. A developed FBG cone penetrometer, however, achieves excellent temperature compensation during penetration, and produces continuous change of underground temperature. In addition, the temperature compensated FBG cone shows the excellent sensitivity and detects the interface of the layered soils with higher resolution. This study demonstrates that the fiber optic sensor renders the possibility of the ultra small size cone and the new fiber optic cone may produce more reliable temperature compensated tip resistance.