• Title/Summary/Keyword: 한계변형율

Search Result 76, Processing Time 0.023 seconds

An Analysis of the Internal Deformation Behaviors of Geosynthetic Reinforced Soil Walls used Clayey Soil as Backfills (뒤채움재로 점성토를 사용한 보강토벽의 내적 거동 분석)

  • Kim, Heung-Ki;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.2
    • /
    • pp.39-49
    • /
    • 2005
  • In this study, the fifteen month behavior of two geosynthetic reinforced walls which was constructed on the shallow weak ground was measured and analyzed. The walls were backfilled with clayey soil obtained from the construction site nearby, and the safety factors obtained from general limit equilibrium analysis were less than 1.3 in both wall. The measured and analyzed data were horizontal earth pressures, strain of reinforcements, and excess pore water pressures. The used reinforcements were nonwoven geotextile, woven geotextile and geogrid. Although the length of reinforcement was only 30% of wall height and the safety factors of the walls were less than 1.3, the walls were constructed without any problems on the such weak ground. The analysis results showed that the maximum strain of reinforcements were negligible and the strain was between 2.3 and 6.0% according to tensile characteristic of the reinforcements. The excess pore water pressure was not changed due to the rainfall and the horizontal earth pressures in upper and lower part of the walls were larger than the active and the rest pressure.

  • PDF

Hybrid Analysis of Displacement Behavior and Numerical Simulation on Tunnel Design (터널 변위 거동 및 수치 모의실험의 결합 해석)

  • Jeong, Yun-Young;Han, Heui-Soo;Lee, Jae-Ho
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • This study is focused on the analysis of tunnel behavior to estimate the stability on tunnel design. An estimation method was proposed as a hybrid consideration, which contains the displacement analysis by 3D numerical simulation, the maximum displacement obtained after field measurement, and an assessment of tunnel stability using a deformation analysis proposed by Sakurai(1988, 1997). The points of case study by Sakurai(1988, 1997) were replotted considering his analysis. From the new analysis of the tunnel case study, the trend line for analyzed points is analogized, which curve is divided into stable, unstable and failure zone. To evaluate the estimation method, a special shape of railway tunnel was selected, which are the Inchon international airport rail way connected to subway line 9 in Gimpo, Korea. The point s of upper and below track on the Inchon international airport rail way were satisfied to the stability of tunnel after reinforcing. Also the points shows the higher apparent Young's modulus, which resulted from improvement on shear strength by the micro silica grouting and the supporting of umbrella method. Therefore, if new analysis used, proper tunnel reinforcing method could be selected according to tunnel strain and geological property.

Characteristics of Dynamic Parameter of Sandy Soil According to Grout Injection Ratio (그라우트 주입율 변화에 따른 사질토의 동적계수 특성)

  • Ahn, Kwangkuk;Park, Junyoung;Oh, Jonggeun;Lee, Jundae;Han, Kihwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.59-63
    • /
    • 2011
  • Ground dynamic parameter such as shear elastic modulus and damping ratio is a very important variable in design of ground-structure with repeated load and dynamic load. Shear elastic modulus and damping ratio on small strain below linear limit strain is constant regardless of strain. Shear elastic modulus as the maximum shear elastic modulus and damping ratio as the minimum damping ratio were considered. As a lot of experiment related to the maximum shear elastic modulus, which is in dynamic deformation characteristics, have been conducted, many factors including voiding ratio, over consolidation ratio(OCR), confining pressure, geology time, PI, and the number of load cycle affect to dynamic soil characteristic. However, the research of ground dynamic characteristic improved with grout is absent such as underground continuous wall construction, deep mixing method, umbrella arch method. In order to investigate the dynamic soil characteristics improved with grout, in this study, resonant column tests were performed with changing water content(20%, 25%, 30%) and injection ratio of grout(5%, 10%, 15%), cure time(7th day, 28th day) As a result, shear elastic modulus and damping ratio, which are ground dynamic parameter, are affected by the injection ratio of milk grout, cure time and water content.

Design and Implementation of a Swearing Remover Program on Web board (웹 게시판 비속어 처리 프로그램의 설계 및 구현)

  • 조아영
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.10
    • /
    • pp.1317-1328
    • /
    • 2001
  • The existing swearing remover programs could not have blocked even slightly transformed swearings because of their input blocking properties. To overcome these defects, this paper implemented a supervising program which analysize and remove/replace swearings on web board. For this purpose this paper first classified the patterns of swearings on web board and then implemented a tokenizer which can analysize those patterns. The module tokenizing and removing/replacing swearings on each web board was implemented as a thread so that it could be parallely controlled. As a result of running this Program on some web boards , we found out it had detected almost of the swearings as 91.9% of recall but it could not meet our purpose sufficiently on morphological transformed swearings and swearings in context. So the studies will be continued about processing on morphological ambiguous words, ambiguous words in meaning and sweaings in context by extracting this program's manual mode. We expect this program could induce the users to proper usage of words and replace the manual works of web board managers in schools, public bodies, broadcasting stations etc.

  • PDF

Modifications of RC/TS(Resonant Column and Torsional Shear) Device for the Large Strain (대변형율 시험을 위한 공진주 비틂전단 시험기의 수정)

  • Bae, Yoon-Shin
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.1-10
    • /
    • 2008
  • Conventional RC/TS(resonant column and torsional shear) device usesa specimen with an aspect ratio(height-to-diameter) of 2:1 and this generates a maximum shear strain in the sample of about 1.5% at the maximum rotation of the drives system. The objective of this study is to modify RC/TS device to generate higher strain amplitude. The modifications include a new base pedestal to overcome the limitations in the travel of the drive system and modification of coil wiring to increase torque. The effects of the new coil wire on torque in the electro magnetic drive system were evaluated and the application of modified device was illustrated using sand soil.

  • PDF

Engineering Characteristics of Sam Cheok Organic Soil (삼척 유기질토의 공학적 특성)

  • Kim, Sang-Gyu;Choe, In-Geol;Park, Yeong-Mok
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.21-34
    • /
    • 1996
  • This paper presents the engineering characteristics of the Samcheok organic soil which contains a large portion of organic matter and high natural water content. A series of lab tests shows that the measured liquid limit is quite different depending on preparing methods of specimens. The values tested with natural condition are higher up to 4 times than thole of the oven dry specimen. It is shown that the organic soils fail at large strain and do not show peak stress in the stress strain relationships. Also strength increase ratios, which are measured 0.43 to 0.65 in this tests, are significantly higher than those of the soft clay without organic matter. The consolidation tests indicate that the verti'cal and horizontal Permeabilities are almost the same. For the remolded samples is reduced from 112 to 116 of the vertical permeability An increase of organic matter or water content of the organic soils results in an increase of the coefficient of secondary consolidation. The increase rate is slow below 15 percents of the organic contents while the rate becomes higher above the value.

  • PDF

A Study of Statistic Behavior of Segmental U-shaped Prestressed Concrete Girder Applied with Integrated Tensioning Systems (복합긴장방식이 적용된 세그멘탈 U형 거더 정적 거동 연구)

  • Hyunock Jang;Ilyoung Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.329-338
    • /
    • 2024
  • Purpose: This study verified the safety of the improved box-type girder behavior by comparing and evaluating the bending behavior results of a full-scale specimen based on the analytical behavior of the splice element PSC U-shaped girder with integrated tensioning systems. Method: Based on the results of the service and strength limit state design using the bridge design standard(limit state design method), the applied load of a 40m full-scale specimen was calculated and a static loading experiment using the four-point loading method was performed. Result: When the design load, crack load, and ultimate load were applied, the specimen deflection occurred at 97.1%, 98.5%, and 79.0% of the analytical deflection value. When the design load, crack load, and ultimate load were applied, the crack gauge was measured at 0.009~0.035mm, 0.014~0.050mm, and 6.383~5.522mm at each connection. Conclusion: The specimen behaved linear-elastically until the crack load was applied, and after cracks occurred, it showed strainhardening up to the ultimate load, and it was confirmed that the resistance of bending behavior was clearly displayed against the applied load. The cracks in the dry joints were less than 25% of grade B based on the evaluation of facility condition standard. The final residual deformation after removing the ultimate load was 0.114mm, confirming the stable behavior of the segment connection.

Analysis for Effects of Slope Failure Behavior by Finite Element Method (유한요소법에 의한 사면붕괴 거동해석에 미치는 영향분석)

  • 김영민
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.19-28
    • /
    • 1999
  • In this paper, an application of finite element procedure for the analysis of slope failure behavior has been studied. The most widely accepted methods in analyzing the slope stability problems are mostly based on limit equilibrium method. And the finite element method is widely accepted to analyze stress and displacements. This paper shows how the factor of safety calculated in the finite element method can be systematically incorporated into slope stability. In analyzing the slope failure behavior by finite element method, the effects of computational method and the results have been discussed. And several computations of slope stabilities were carried out to compare the finite element analysis results with those obtained by methods of slices based on the limit equilibrium analysis.

  • PDF

Investigation of Proper Replacement Depth for the Reinforced Earth Wall on a Soft Ground by Finite Element Analysis (유한요소해석에 의한 연약지반 상 보강토 옹벽에 대한 적정 치환깊이 검토)

  • Lee, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.153-162
    • /
    • 2007
  • For the reinforced earth wall constructed on a soft ground in parallel with replacing soft soils, the behavior of the wall according to variations of thickness and stiffness of soft layer, replacement depth, and wall height is investigated using a finite element method, in which incremental construction steps including consolidation of soft soil layer are considered. The behavior of wall is characterized by investigating displacements and settlements developing at the wall, and shear strains developing in a soil deposit. The stability of wall is, then, evaluated by comparing these values with the safety criteria determined on the basis of the literature. Based on the investigation, it is shown that the behavior of wall is influenced naturally from soft soil thickness(t), replacement depth(d) and wall height(h), but more significantly from d and h. In addition, it is also shown that the normalized replacement depth, d/h, required for the safety of wall is not influenced significantly by the variations of t and h. Consequently, it can be concluded that the proper replacement depth can be suggested in an equivalent value in terms of d/h, even for the cases where the wall height is varying with stations, but the variation is not significant.

Evaluation of the Mechanical Properties of Electroformed Multi-nano Layers by the Dynamic-Nano Indentation Method (동적 나노압침법과 유한요소 해석에 의한 전주된 Invar-Cu 복합 박막층의 기계적 특성 평가)

  • Gang, Bo-Gyeong;Han, Sang-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.201.1-201.1
    • /
    • 2016
  • 전주된 Invar (Fe-35%Ni) 박판 위에 증착된 Cu 박막은 스퍼터 전력량이 증가할수록 증착속도가 증가하였다. Cu/Invar 박판이 Invar 박판보다 면저항 값이 34%로 작았다. Invar 박판 위에 Cu가 증착되면 최대자화와 투자율은 각각 40.3, 65.0 [%] 감소하였다. Cu 박막의 탄성하강강성도, 마찰계수, 피로한계는 각각 45, 0.130, 0.093 이었다. 동적 나노 압침법으로 얻은 Invaar/Cu 박막의 하중-시간-변위 곡선의 가장 큰 차이는 탄성하강강성도(elastic stiffness) 이었다. 미세경도와 나노경도의 실험적 관계식은 $Y[GPa]=9.18{\times}10^{-3}X[Hv]$ 이었다. 나노압침선단의 하중분포를 이차원 선형 및 비선형 유한요소해석을 통하여 1.0 [mN] 의 정적하중을 가한 Cu 박막은 486 [mN] 으로 예측되었다. 이는 표면탐침현미경으로 관찰한 압흔의 변형정도와 유사한 경향을 보였다.

  • PDF