본 연구는 국내 이공계 대학 유학생들의 전공기초 학습 경험을 탐색하여 유학생들이 이공계 학부 과정을 이수하는데 실제로 필요로 하는 것이 무엇인지 살펴보고 국내 이공계 대학의 교육 경쟁력 강화를 위한 시사점을 제공하고자 수행되었다. 연구 대상은 국내 이공계 대학에 재학 중인 유학생 7명이며, 출신 국가는 중국, 베트남, 우즈베키스탄, 말레이시아 등 4개국이다. 연구자는 자발적인 참여 의사를 밝힌 유학생 7명에 대하여 서답형 설문 조사를 실시하였으며, 이 중 4명에 대해서는 개별적인 심층 면담도 진행하였다. 면담 시간은 30분에서 1시간 정도 소요되었으며, 반구조화된 면담 기법을 활용하였다. 면담 내용은 참여자들의 동의 하에 모두 녹음되었으며, 녹음된 자료는 전사하여 면담노트와 함께 관리되었다. 전사된 자료는 연속 비교법의 단계에 따른 부호화 및 범주화 과정을 토대로 분석하였으며, 그 결과, 이공계 전공기초 과목 수강에 따른 한국어 능력 부족으로 인한 문제, 전공기초 과목에서 등장하는 용어나 개념 이해의 문제, 전공기초 과목의 보충학습 방법, 전공기초 교육프로그램 개설의 필요성 및 대학의 관심과 지원 요청 등의 네 가지 주제들이 도출되었다.
스마트 기기의 보급률 증가와 더불어 코로나의 영향으로 스마트 기기를 통한 미디어 콘텐츠의 소비가 크게 늘어나고 있다. 이러한 추세와 더불어 OTT 플랫폼을 통한 미디어 콘텐츠의 시청과 콘텐츠의 양이 늘어나고 있어서 해당 플랫폼에서의 콘텐츠 추천이 중요해지고 있다. 콘텐츠 기반 추천 관련 기존 연구들은 콘텐츠의 특징을 가리키는 메타 데이터를 활용하는 경우가 대부분이었고 콘텐츠 자체의 내용적인 메타 데이터를 활용하는 경우는 부족한 상황이다. 이에 따라 본 논문은 콘텐츠의 내용적인 부분을 설명하는 제목과 시놉시스를 포함한 다양한 텍스트 데이터를 바탕으로 유사한 콘텐츠를 추천하고자 하였다. 텍스트 데이터를 학습하기 위한 모델은 한국어 언어모델 중에 성능이 우수한 KLUE-RoBERTa-large를 활용하였다. 학습 데이터는 콘텐츠 제목, 시놉시스, 복합 장르, 감독, 배우, 해시 태그 정보를 포함하는 2만여건의 콘텐츠 메타 데이터를 사용하였으며 정형 데이터로 구분되어 있는 여러 텍스트 피처를 입력하기 위해 해당 피처를 가리키는 스페셜 토큰으로 텍스트 피처들을 이어붙여서 언어모델에 입력하였다. 콘텐츠들 간에 3자 비교를 하는 방식과 테스트셋 레이블링에 다중 검수를 적용하여 모델의 유사도 분류 능력을 점검하는 테스트셋의 상대성과 객관성을 도모하였다. 콘텐츠 메타 텍스트 데이터에 대한 임베딩을 파인튜닝 학습하기 위해 장르 분류와 해시태그 분류 예측 태스크로 실험하였다. 결과적으로 해시태그 분류 모델이 유사도 테스트셋 기준으로 90%이상의 정확도를 보였고 기본 언어모델 대비 9% 이상 향상되었다. 해시태그 분류 학습을 통해 언어모델의 유사 콘텐츠 분류 능력이 향상됨을 알 수 있었고 콘텐츠 기반 필터링을 위한 언어모델의 활용 가치를 보여주었다.
문장 압축은 원본 문장의 중요한 의미는 유지하면서 길이가 축소된 압축 문장을 생성하는 자연어처리 태스크이다. 문법적으로 적절한 문장 압축을 위해, 초기 연구들은 사람이 정의한 언어 규칙을 활용하였다. 또한 시퀀스-투-시퀀스 모델이 기계 번역과 같은 다양한 자연어처리 태스크에서 좋은 성능을 보이면서, 이를 문장 압축에 활용하고자 하는 연구들도 존재했다. 하지만 언어 규칙을 활용하는 연구의 경우 모든 언어 규칙을 정의하는 데에 큰 비용이 들고, 시퀀스-투-시퀀스 모델 기반 연구의 경우 학습을 위해 대량의 데이터셋이 필요하다는 문제점이 존재한다. 이를 해결할 수 있는 방법으로 사전 학습된 언어 모델인 BERT를 활용하는 문장 압축 모델인 Deleter가 제안되었다. Deleter는 BERT를 통해 계산된 perplexity를 활용하여 문장을 압축하기 때문에 문장 압축 규칙과 모델 학습을 위한 데이터셋이 필요하지 않다는 장점이 있다. 하지만 Deleter는 perplexity만을 고려하여 문장을 압축하기 때문에, 문장에 속한 단어들의 언어 정보를 반영하여 문장을 압축하지 못한다. 또한, perplexity 측정을 위한 BERT의 사전 학습에 사용된 데이터가 압축 문장과 거리가 있어, 이를 통해 측정된 perplexity가 잘못된 문장 압축을 유도할 수 있다는 문제점이 있다. 이를 해결하기 위해 본 논문은 언어 정보의 중요도를 수치화하여 perplexity 기반의 문장 점수 계산에 반영하는 방법을 제안한다. 또한 고유명사가 자주 포함되어 있으며, 불필요한 수식어가 생략되는 경우가 많은 뉴스 기사 말뭉치로 BERT를 fine-tuning하여 문장 압축에 적절한 perplexity를 측정할 수 있도록 하였다. 영어 및 한국어 데이터에 대한 성능 평가를 위해 본 논문에서 제안하는 LI-Deleter와 비교 모델의 문장 압축 성능을 비교 실험을 진행하였고, 높은 문장 압축 성능을 보임을 확인하였다.
On the basis of studies that show multi-word combinations, that is the field of phraseology, this study aims to examine relationship between the quality of text and phraseological competence in L2 English writing, following Yves Bestegen et al. (2014). Using two different association scores, t-score and Mutual Information(MI), which are opposite ways of measuring phraseological competence, in terms of scoring frequency and infrequency, bigrams from L2 writers' text scored based on a reference corpus, GloWbE (Corpus of Global Web based English). On a cross-sectional approach, we propose that the quality of the essays and the mean MI score of the bigram extracted from YELC, Yonsei English Learner Corpus, correlated to each other. The negative scores of bigrams are also correlated with the quality of the essays in the way that these bigrams are absent from the reference corpus, that is mostly ungrammatical. It indicates that increase in the proportion of the negative scored bigrams debases the quality of essays. The conclusion shows the quality of the essays scored by MI and t-score on cross-sectional approach, and application to teaching method and assessment for second language writing proficiency.
본 연구에서는 딥러닝을 이용해 3300종에 이르는 다양한 한글 폰트를 인식하였다. 폰트는 디자인 분야에 있어서 필수적인 요소이며 문화적으로도 중요하다. 한글은 영어권 언어에 비해 훨씬 많은 문자를 포함하고 있기 때문에 한글 폰트 인식은 영어권 폰트 인식보다 어렵다. 본 연구에서는 최근 다양한 영상 인식 분야에서 좋은 성능을 보이고 있는 CNN을 이용해 한글 폰트 인식을 수행하였다. 과거에 이루어진 대부분의 폰트 인식 연구에서는 불과 수 십 종의 폰트 만을 대상으로 하였다. 최근에 이르러서야 2000종 이상의 대용량 폰트 인식에 대한 연구결과가 발표되었으나, 이들은 주로 문자의 수가 적은 영어권 문자들을 대상으로 하고 있다. 본 연구에서는 CNN을 이용해 3300종에 이르는 다양한 한글 폰트를 인식하였다. 많은 수의 폰트를 인식하기 위해 두 가지 구조의 CNN을 이용해 폰트인식기를 구성하고, 실험을 통해 이들을 비교 평가하였다. 특히, 본 연구에서는 3300종의 한글 폰트를 효과적으로 인식하면서도 학습 시간과 파라미터의 수를 줄이고 구조를 단순화하는 방향으로 모델을 개선하였다. 제안하는 모델은 3300종의 한글 폰트에 대하여 상위 1위 인식률 94.55%, 상위 5위 인식률 99.91%의 성능을 보였다.
본 논문에서는 기존의 循環神經回路網에서의 學習性能을 개선하고 局部최소해 문제를 해결하기 위한 노력의 일환으로서 附加적인 피드백 연결을 가진 순환신경회로망과 그 학습 알고리듬을 제안하였다. 이 방법에서는 회로망은 한번 반복하는동안 고정된 연결 가중치를 가지고, 주어진 時變人力과 初期條件下에서 주어진 週期동안 동작한다. 가중치는 最急降下法에 의해 총에너지가 가장 많이 감소하는 방향으로 변화된다. 만일 이러한 과정을 일정 반복횟수동안 수행한 후에도 에너지가 충분히 감소하지 않으면, 附加적인 피드백 연결이 도입되고 회로망의 외부입력이 주어진 식에 따라 다시 정의된다. 또한 제안된 회로망의 응용으로서 한국어 숫자음 인식에 대한 실험을 행하였다.
오늘날 영어교육은 교과과정령에 엄연히 명시된 네 가지 기능(four skills) 즉 듣기, 말하기, 원기, 쓰기라는 정당하고도 보편 타당성 있는 명분 하에 어떻게 가르쳐 왔는가 를 반문해 보면 많은 아쉬움이 남는다. 그간 6년간의 중등과정, 심지어는 대학에서 환 두해까지 영어를 이수한 사람틀 중에는 문자를 통해서는 상당한 수준, 그것도 영어 토박이들조차 놀랄 정도의 영어를 이해하지만, 소리를 통해 들을 때는 ---말하는 것은 두말 할 것도 없고---아주 간단한 내용의 영어조차 알아듣기 힘든 경험을 한 사람이 많다는 것은 부인할 수 없는 사실이다. 그 이유는 명백하다. 즉, 문자를 대할 때는 시각적 자극의 형태가 두뇌 속에 저장된 정보---가공할 문법적 지식---와 일치하기 때문에 쉽게 이해를 할 수 있는 반면, 소리를 들을 때는 청각적 자극의 형태가 두뇌 속에 저장된 정보---극히 불완전한 발음사전, 또는 모국어의 음운체계에 의한 영어발음--- 와 차이가 있기 때문일 것이다. 그러므로 적어도 말소리를 매체로 하는 의사소통에 있어서는 영어의 본토박이 발음을 정확히, 아니면 적어도 매우 근접하게 나마 터득하여(습관화하여)두뇌에 저장하는 일이 가장 중요한 일이다. 따라서 영어교사는 모국어의 음운체계에 대한 정확하고도 상세한 지식을 토대로 하여 영어의 음운체계와 '언어학적으로 의미 있는 (linguistically significant)' 대초분석의 방법으로 발음을 지도한다면 보다 나은 학습효과를 기대할 수 있을 것이다. 일반적으로 모국어의 발음이 외국어의 발음에 간섭을 유발하는 경우는 다음과 같다. 1. 분절음체계가 서로 다를 때 2. 한 언어의 음소가 다른 언어의 이음(allophone)일 때 3. 유사한 음의 조음장소와 방법 이 다를 때 4. 분절음의 분포 또는 배열이 다를 때 5. 음운현상이 다를 때 6. 언어의 리듬이 다를 때 위의 여섯 가지 경우를 중심으로 영어와 한국어의 발음특성을 대조하여 '낯선 말투(foreign accent)' 또는 발음오류를 최소로 줄이는 것이 영어교사의 일차적인 목표이다.
음차 표기된 외래어로부터 원어를 복원하는 문제는 원어의 발음정보를 이용한 통계적인 방법을 많이 사용한다. 하지만 지금까지의 연구들은 대부분 영어단어만을 그 대상으로 하였기 때문에 '도쿄(Tokyo)', '하인리히(Hinrich)'와 같이 어원이 영어가 아닌 단어들의 복원에는 좋은 결과를 보여주지 못했다. 이러한 문제를 해결하기 위하여 한글로 표기된 외래어의 어원을 판단할 수 있는 방법을 찾아내고, 이 방법을 통해 외래어를 어원별로 분리하여 학습모델을 구축함으로써 다양한 어원을 가진 외래어들의 복원 정확률을 높이고자 하였다. 위의 방식으로 구현된 시스템은 영어, 일본어, 중국어, 프랑스어의, 서로 다른 4개의 어원을 가진 데이터의 복원 실험에서 기존의 방식에 비해 13%의 성능 향상을 보였다.
The present research investigated the characteristics of voice between genders and nationalities by measuring the acoustic parameter values of Korean and Chinese students. Sound Forge was used to collect voice samples and Praat was used to measure and analyze jitter, shimmer, NHR, $sF_0$, and pitch range. The results of this research are a follows. First, during prolongation of the vowels, there was no significant difference in $F_0$ between Korean and Chinese males and Korean and Chinese females. Korean males and females had higher $F_0$ values than Chinese males and females. Secondly, during sentence reading, there was no significant difference between Korean and Chinese males in $sF_0$. But between female groups, there was a significant difference in $sF_0$. Thirdly, during sentence reading, the pitch range in Korean males was found to be narrower compared to Korean and Chinese females who had wider pitch range, showing a significant difference. Fourthly, jitter in the five vowels /a, i, u, e, o/ was found to be higher in Chinese than Korean subjects. In the vowels /a, e, u/ females were higher than males showing a significant difference. Fifthly, shimmer in the vowels /a, e, u/ was found to be higher in Chinese than Korean subjects showing a significant difference. Finally, NHR in the vowels /a, u, o/ was found to be higher in Chinese than Korean subjects showing a significant difference.
The purpose of this study is to investigate the effect of Japanese(L1) on the production of Korean accentual phrases(L2). Korean and Japanese have a similar prosodic structure. But different from Korean, Japanese is a pitch accent language. So each word has its own pitch accent. And pitch accents are maintained in the sentence intonation. This difference will have a negative influence on the production of Korean sentence intonation. For this study 4 Korean natives speakers and 10 advanced Japanese learners of Korean participated in the production test. The material analysed constituted 11 Korean sentences, six of which contain formally identical Sino-Korean and Sino-Japanese words. The results show that the initial pitch pattern of Korean accentual phrases was affected by Japanese pitch accent types and this interference was greater for formally identical Sino-Korean and Sino-Japanese words. But besides initial tones of accentual phrase, some positive interference was observed in the internal tonal pattern of accentual phrase. In the phonetic realization, the internal pitch range and initial pitch rising of accentual phrases was greater for Japanese learners of Korean than native speakers of Korean.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.