• 제목/요약/키워드: 학습 평가

검색결과 5,624건 처리시간 0.034초

산림지역에서의 2023년 봄철 꽃나무 개화시기 예측 (Prediction of Spring Flowering Timing in Forested Area in 2023)

  • 서지희;김수경;김현석;천정화;원명수;장근창
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.427-435
    • /
    • 2023
  • 이상기상으로 인한 봄꽃 개화 시기의 변화는 식물의 생장기간 뿐 아니라 생물계절을 포함한 생태계의 모든 측면에 영향을 미친다. 따라서 봄꽃 개화 시기를 예측하는 것은 산림 생태계의 효과적인 관리에 필수적이다. 본 연구에서는 464곳의 산림에서 수집된 날씨정보를 기반으로 대한민국 산림의 대표적인 5가지 수종(미선나무, 아까시나무, 철쭉, 산철쭉, 마가목)의 2023년 개화 시기를 예측하기 위해 과정 기반 모형을 사용하였다. 이를 위해 28개 지역의 9년간(2009-2017) 개화 시기 자료를 활용하여 모형을 개발하였다. 개화 시기는 식물의 세 개 이상의 위치에서 처음으로 꽃이 피는 것을 기준으로 측정되었다. 본 연구에서는 STDD와 GDD 과정 기반 모형을 사용하여 개화 시기를 예측하였으며, 두 모형 모두 일반적으로 우수한 성능을 보였다. 과정 기반 모형의 주요 입력변수인 날씨 자료는 산악기상관측시스템과 기상청에서 제공하는 기온 정보를 융합하여 1km의 공간 해상도로 일 단위 기온 자료를 생성하였다. 지역별 보정 계수를 생산하고 적용하기 위해 랜덤포레스트 기계 학습을 활용하여 STDD와 GDD 모형을 기반으로 예측 정확도를 개선하였다. 결과적으로 보정 계수가 적용될 때 대부분의 수종에서 개화 시기의 예측 오차가 작았으며, 특히, 미선나무, 아까시나무, 철쭉에서 평균제곱근오차가 각각 1.2, 0.6, 1.2일로 매우 낮았다. 모형 성능을 평가하기 위해 10회의 무작위 샘플링 테스트를 실시하고, 최적의 결정계수 값을 가진 모형을 선택하여 모형의 성능을 평가하였다. 그 결과, 마가목을 제외한 모든 수종에서 보정 계수가 적용된 모형에서 결정계수가 최소 0.07에서 최대 0.7 증가하였으며 최종적으로 75%에서 90%의 설명력을 가졌다. 이를 기반으로 수종별 보정 계수를 산출하였으며, 1km 해상도의 전국 단위 개화시기예측 지도를 제작하였다. 본 연구는 식물의 계절 변화에 대한 자료로 활용될 것으로 예상되며, 수종 및 지역별로 개화 시기를 상세히 설명하여 기후 변화로 인한 계절 변화를 연구하는 데에 유용할 것으로 기대된다. 또한 우리나라 산림의 주요 수종에 대한 정확도 높은 개화 시기 예측 서비스는 산림 방문객들의 산림 경험 만족도를 크게 높일 수 있으며, 양봉업 등 임업 종사자들의 경제적 향상에 기여할 것으로 기대된다.

인공지능 기반 임상의학 결정 지원 시스템 의료기기의 성능 및 안전성 검증을 위한 간 종양 표준 데이터셋 구축 (Construction of a Standard Dataset for Liver Tumors for Testing the Performance and Safety of Artificial Intelligence-Based Clinical Decision Support Systems)

  • 김승섭;이동호;이민우;김소연;신재승;최진영;최병욱
    • 대한영상의학회지
    • /
    • 제82권5호
    • /
    • pp.1196-1206
    • /
    • 2021
  • 목적 간 종양의 조영증강 컴퓨터단층촬영(이하 CT) 영상에 관한 인공지능 알고리즘의 성능과 안전성을 검증할 수 있는 표준 테스팅 데이터셋을 구축하고자 하였다. 대상과 방법 국내 4개 3차 의료기관의 복부 영상의학 전문가 4인이 모여 간 종양 진단 알고리즘의 성능과 안전성을 검증하기 위해 표준 데이터셋이 갖춰야 할 조건을 논의하였다. 각 기관마다 간세포암 75예, 전이암 75예, 그리고 양성 병변 30-50예씩 수집하여, 총 783명 환자의 CT 영상을 대상으로 하였다. 간세포암과 전이암의 경우 병리학적으로 확진된 경우만을 대상으로 하였다. 각 기관의 복부 영상의학 전문가들이 직접 환자의 임상정보를 추출하고 CT 영상에 관한 데이터 라벨링(labeling)을 수기로 시행하였다. CT 영상은 의료용 디지털 영상 및 통신(Digital Imaging and Communications in Medicine, DICOM) 파일로 저장하였다. 결과 복부 영상의학 전문가들이 수기 데이터 라벨링을 시행한 총 783 증례의 간 종양 조영증강 CT의 표준 데이터셋을 구축하였다. 알고리즘의 성능 및 안전성은 병변의 발견 여부 및 특성화의 정확도에 대해 민감도와 특이도를 계산하여 평가할 수 있다. 결론 본 연구에서 구축한 간 종양 조영증강 CT 영상의 표준 데이터셋은 임상의학 결정 지원시스템을 위한 기계학습 기반 인공지능 알고리즘을 평가하는 데에 활용될 수 있다.

비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로 (Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront)

  • 김승수;김종우
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.221-241
    • /
    • 2018
  • 최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.

R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템 (An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis)

  • 이충석;이석주;최병구
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.79-96
    • /
    • 2012
  • 기술의 발전과 융합이 빠르게 이루어지고 있는 오늘날 유망기술을 어떻게 파악하여, 다양한 후보군들 중에서 최적의 R&D 대상을 어떻게 선정할 것인가에 대한 문제는 주요한 경영의사결정문제 중 하나로 부상하고 있다. 본 연구에서는 이러한 R&D 기술 선정 의사결정을 지원할 수 있는 새로운 지능형 의사결정지원시스템을 제안한다. 본 연구의 의사결정지원시스템은 크게 3가지 모듈로 구성되는데, 우선 첫 번째 모듈인 '기술가치 평가' 모듈에서는 기업이 관심을 갖고 있는 분야의 특허들을 분석하여 유망기술 파악에 요구되는 다양한 차원의 기술가치 평가지수 값들을 산출하는 작업이 이루어진다. 이를 통해, 현재 시점에서의 각 기술의 가치가 다양한 차원에서 평가가 이루어지고 나면, 두 번째 모듈인 '미래기술가치 예측' 모듈에서 이들의 시간 흐름에 따른 변화를 학습한 인공지능 모형을 토대로 각 후보기술들이 미래 시점에 어떤 가치지수값을 갖게 될 것인지 예측값을 산출하게 된다. 마지막 세 번째 모듈인 '최적 R&D 대상기술 선정 지원' 모듈에서는 앞서 두 번째 모듈에서 산출된 각 차원별 예상 가치지수값들을 적절히 가중합하여 기술의 종합적인 미래가치 예측값을 산출하여 의사결정자에게 제공하는 기능을 수행한다. 이를 통해 의사결정자가 자사에 적합한 최적의 R&D 대상기술을 선정할 수 있도록 하였다. 본 연구에서는 제안된 시스템의 적용 가능성을 검증하기 위해, 10년치 특허데이터에 인공신경망 기법을 적용하여 실제 기술가치 예측모형을 구축해 보고, 그 효과를 살펴본다.

네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템 (Major Class Recommendation System based on Deep learning using Network Analysis)

  • 이재규;박희성;김우주
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.95-112
    • /
    • 2021
  • 대학 교육에 있어서 전공과목의 선택은 학생들의 진로에 중요한 역할을 한다. 하지만, 산업의 변화에 발맞춰 대학 교육도 학과별 전공과목의 분야가 다양해지고 그 수가 많아지고 있다. 이에 학생들은 본인의 진로에 맞게 수업을 선택하여 수강하는 것에 어려움을 겪고 있다. 본 연구는 대학 전공과목 추천 모델을 제시함으로써 개인 맞춤형 교육을 실현하고 학생들의 교육만족도를 제고하고자 한다. 모델 연구에는 대학교 학부생들의 2015년~2017년 수강 이력 데이터를 활용하였으며, 메타데이터로는 학생과 수업의 전공 명을 사용했다. 수강 이력 데이터는 컨텐츠 소비 여부만을 나타낸 암시적 피드백 데이터로, 수업에 대한 선호도를 반영한 것이 아니다. 따라서 학생과 수업의 특성을 나타내는 임베딩 벡터를 도출했을 시, 표현력이 낮다. 본 연구는 이러한 문제점에 착안하여, 네트워크 분석을 통해 학생, 수업의 벡터를 생성하고 이를 모델의 입력 값으로 활용하는 Net-NeuMF 모델을 제시한다. 모델은 암시적 피드백을 가진 데이터를 이용한 대표적인 모델인 원핫 벡터를 이용하는 NeuMF의 구조를 기반으로 하였다. 모델의 입력 벡터는 네트워크 분석을 통해 학생과 수업의 특성을 나타낼 수 있도록 생성하였다. 학생을 표현하는 벡터를 생성하기 위해, 각 학생을 노드로 설정하고 엣지는 두 학생이 같은 수업을 수강한 경우 가중치를 가지고 연결되도록 설계했다. 마찬가지로 수업을 표현하는 벡터를 생성하기 위해 각 수업을 노드로 설정하고 엣지는 공통으로 수강한 학생이 있는 경우 연결시켰다. 이에 각 노드의 특성을 수치화 하는 표현 학습방법론인 Node2Vec을 이용하였다. 모델의 평가를 위해 추천 시스템에서 주로 활용하는 지표 4가지를 사용하였고, 임베딩 차원이 모델에 미치는 영향을 분석하기 위해 3가지 다른 차원에 대한 실험을 진행하였다. 그 결과 기존 NeuMF 구조에서 원-핫 벡터를 이용하였을 때보다 차원과 관계없이 평가지표에서 좋은 성능을 보였다. 이에 본 연구는 학생(사용자)와 수업(아이템)의 네트워크를 이용해 기존 원-핫 임베딩 보다 표현력을 높였다는 점, 모델을 구성하는 각 구조의 특성에 맞도록 임베딩 벡터를 활용하였다는 점, 그리고 기존의 방법론에 비해 다양한 종류의 평가지표에서 좋은 성능을 보였다는 점을 기여점으로 가지고 있다.

종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템 (A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings)

  • 구민정;안현철
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.85-109
    • /
    • 2018
  • 추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.

감정예측모형의 성과개선을 위한 Support Vector Regression 응용 (Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model)

  • 김성진;유은정;정민규;김재경;안현철
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.185-202
    • /
    • 2012
  • 오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.

특성화고 진학 및 졸업 후 진로에 대한 중학생, 학부모, 산업체 인사 담당자의 인식 비교 연구 (A Comparative Study on Awareness of Middle School Students, School Parents, and Human Resources Directors in Industrial Institutions about Admission into Specialized High Schools and Career after Graduating from Specialized High Schools)

  • 이병욱;안재영;이찬주;이상현
    • 대한공업교육학회지
    • /
    • 제38권2호
    • /
    • pp.48-67
    • /
    • 2013
  • 본 연구는 특성화고 교육의 주요 수요자가 될 중학생, 학부모, 산업체 인사 담당자의 특성화고 진학 및 졸업 후 진로에 대한 인식을 조사하여 특성화고의 운영 방향에 관한 시사점을 제안하고자 한다. 이를 위해 충남 아산시의 중학교 3학년생과 학부모 및 산업체 인사를 대상으로 조사 연구를 실시하였다. 본 연구의 결과를 요약하면 다음과 같다. 첫째, 중학생과 학부모는 대체로 특성화고 마이스터고 등 직업 교육 기관보다는 일반고 진학을 희망하였고 고교 선택 요인으로 중학생은 학업 성적을, 학부모는 적성 소질을 가장 고려하였다. 둘째, 중학생 학부모 산업체 인사는 특성화고의 목적을 학생의 소질 적성 향상 및 취업으로 인식하였고, 특성화고의 긍정적인 이미지는 소질 적성을 일찍 살림, 취업이 잘됨, 졸업 후 자립이 빠름, 우수한 기술 습득 등으로, 부정적인 이미지는 사회적 편견 및 차별, 성적이 좋지 않은 학생의 진학, 승진 임금 등에 대한 불이익, 대학 진학에 불리 등으로 인식하였다. 또한 특성화고 교육이 전공분야 기초 실무 능력 향상, 직업 기초 능력 함양, 창의 인재 육성, 바른 인성 및 태도 함양에 대해 효과가 있는 것으로 인식하였다. 셋째, 다수의 중학생과 학부모가 아산시에 특성화고 설립 시 특성화고 진학 의사를 나타냈고 진학 이유는 적성 소질을 일찍 살림, 우수한 기술 습득, 조기 취업 희망 등, 미진학 이유는 적성 소질에 맞지 않음, 특성화고에 대한 인식 부족, 대학 진학에 불리, 사회적 편견 및 차별 등이었다. 또한 특성화고 졸업 후 취업과 대학 진학을 비슷하게 희망하였고 취업 이유는 대체로 사회 진출을 빨리하여 성공하고 싶거나 대학을 졸업해도 취업하기 어렵기 때문에, 진학 이유는 대체로 전공에 대한 심화교육과 학력에 따른 사회적 차별 때문이었다. 중학생 학부모 산업체 인사가 인식하는 채용 기준으로 직무 수행 능력이 가장 큰 비중을 차지하였다. 중학생과 학부모는 공업 계열 학과, 가정 가사 및 상업 관련 학과를 주로 희망하고 있으며 학과 선택을 위해 적성 소질, 미래 유망, 취업에 유리함 등을 고려하였다. 산업체 인사의 특성화고 학생의 채용 이유는 학생을 산업체의 인재로 성장, 학생이 직무 수행 능력을 갖춤, 고졸 수준의 인력이 필요함 등이었고, 인력이 필요하거나 학생이 직무 수행 능력을 갖추면 채용할 수 있다는 일부 응답이 있었다. 이상의 결과에 따른 특성화고 운영 방향에 대한 제언은 다음과 같다. 특성화고는 학생과 학부모의 다양한 요구에 부합도록 학과 및 교육과정을 다양화하고 진로 지도에 입각한 특성화고 입학 시스템을 구축하며 일 기반 현장 학습을 구축하여 학생의 직무 수행 능력을 향상시켜야 한다. 정부는 특성화고 학생의 실질적인 경력 발달이 가능하도록 선취업 후진학 정책을 정비하고 취업률 등 정량적 평가보다는 특성화고 교육의 내실화를 위한 방향으로 관련 정책을 추진하며, 특성화고 관련 기능 인력이 제대로 평가 및 대우받을 수 있는 각 부처의 협력적 지원이 요구된다.

적응형 군집화 기반 확장 용이한 협업 필터링 기법 (Scalable Collaborative Filtering Technique based on Adaptive Clustering)

  • 이오준;홍민성;이원진;이재동
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.73-92
    • /
    • 2014
  • 기존 협업 필터링 기법은 사용자들의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 구성하고, 이를 이용해 예측된 사용자의 특정 아이템에 대한 선호도를 기반으로 추천을 수행한다. 이로 인해, 사용자 선호도 정보가 부족하게 되면, 유사 아이템 사용자 집합의 신뢰도가 낮아지고, 추천 서비스의 신뢰도 또한 따라서 낮아진다. 또한, 서비스의 규모가 커질수록, 유사 아이템, 사용자 집합의 생성에 걸리는 시간은 기하급수적으로 증가하고 추천서비스의 응답시간 또한 그에 따라 증가하게 된다. 위와 같은 문제점을 해결하기 위해 본 논문에서는 적응형 군집화 기법을 제안하고 이를 적용한 협업 필터링 기법을 제안하고 있다. 이 기법은 크게 네 가지 방법으로 이루어진다. 첫째, 사용자와 아이템의 특성 벡터를 기반으로 사용자와 아이템 각각을 군집화 하여, 기존 협업 필터링 기법에서 유사 아이템, 사용자 집합을 생성하는데 소요되는 시간을 절약하며, 사용자 선호도 정보만을 이용한 부분 집합 생성보다 추천의 신뢰도를 높이고, 초기 평가 문제와 초기 이용자 문제를 일부 해소한다. 둘째, 미리 구성된 사용자와 아이템의 군집을 기반으로 군집간의 선호도를 이용해 추천을 수행한다. 사용자가 속한 군집의 선호도가 높은 순서대로 아이템 군집을 조회하여 사용자에게 제공할 아이템 목록을 구성하여, 추천 시스템의 부하 대부분을 모델 생성 단계에서 부담하고 실제 수행 시 부하를 최소화한다. 셋째, 누락된 사용자 선호도 정보를 사용자와 아이템 군집을 이용하여 예측함으로써 협업 필터링 추천 기법의 사용자 선호도 정보 희박성으로 인한 문제를 해소한다. 넷째, 사용자와 아이템의 특성 벡터를 사용자의 피드백에 따라 학습시켜 아이템과 사용자의 정성적 특성 정량화의 어려움을 해결한다. 본 연구의 검증은 기존에 제안되었던 하이브리드 필터링 기법들과의 성능 비교를 통해 이루어졌으며, 평가 방법으로는 평균 절대 오차와 응답 시간을 이용하였다.

뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구 (A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network)

  • 양윤석;이현준;오경주
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.25-38
    • /
    • 2019
  • 정보화 시대의 넘쳐나는 콘텐츠들 속에서 사용자의 관심과 요구에 맞는 양질의 정보를 선별해내는 과정은 세대를 거듭할수록 더욱 중요해지고 있다. 정보의 홍수 속에서 사용자의 정보 요구를 단순한 문자열로 인식하지 않고, 의미적으로 파악하여 검색결과에 사용자 의도를 더 정확하게 반영하고자 하는 노력이 이루어지고 있다. 구글이나 마이크로소프트와 같은 대형 IT 기업들도 시멘틱 기술을 기반으로 사용자에게 만족도와 편의성을 제공하는 검색엔진 및 지식기반기술의 개발에 집중하고 있다. 특히 금융 분야는 끊임없이 방대한 새로운 정보가 발생하며 초기의 정보일수록 큰 가치를 지녀 텍스트 데이터 분석과 관련된 연구의 효용성과 발전 가능성이 기대되는 분야 중 하나이다. 따라서, 본 연구는 주식 관련 정보검색의 시멘틱 성능을 향상시키기 위해 주식 개별종목을 대상으로 뉴럴 텐서 네트워크를 활용한 지식 개체명 추출과 이에 대한 성능평가를 시도하고자 한다. 뉴럴 텐서 네트워크 관련 기존 주요 연구들이 추론을 통해 지식 개체명들 사이의 관계 탐색을 주로 목표로 하였다면, 본 연구는 주식 개별종목과 관련이 있는 지식 개체명 자체의 추출을 주목적으로 한다. 기존 관련 연구의 문제점들을 해결하고 모형의 실효성과 현실성을 높이기 위한 다양한 데이터 처리 방법이 모형설계 과정에서 적용되며, 객관적인 성능 평가를 위한 실증 분석 결과와 분석 내용을 제시한다. 2017년 5월 30일부터 2018년 5월 21일 사이에 발생한 전문가 리포트를 대상으로 실증 분석을 진행한 결과, 제시된 모형을 통해 추출된 개체명들은 개별종목이 이름을 약 69% 정확도로 예측하였다. 이러한 결과는 본 연구에서 제시하는 모형의 활용 가능성을 보여주고 있으며, 후속 연구와 모형 개선을 통한 성과의 제고가 가능하다는 것을 의미한다. 마지막으로 종목명 예측 테스트를 통해 본 연구에서 제시한 학습 방법이 새로운 텍스트 정보를 의미적으로 접근하여 관련주식 종목과 매칭시키는 목적으로 사용될 수 있는 가능성을 확인하였다.