Annual Conference on Human and Language Technology
/
2018.10a
/
pp.605-607
/
2018
본 논문에서는 음절 임베딩과 양방향 LSTM-CRF 모델을 이용한 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 문장에 대한 자질 벡터 표현을 위해 문장을 구성하는 음절을 Unigram 및 Bigram으로 나누어 각 음절을 연속적인 벡터 공간에 표현하고, 양방향 LSTM을 이용하여 현재 자질에 양방향 자질들과 의존성을 부여한 새로운 자질 벡터를 생성한다. 이 새로운 자질 벡터는 전방향 신경망과 선형체인(Linear-Chain) CRF를 이용하여 최적의 띄어쓰기 태그 열을 예측하고, 생성된 띄어쓰기 태그를 기반으로 문장 자동 띄어쓰기를 수행하였다. 문장 13,500개와 277,718개 어절로 이루어진 학습 데이터 집합과 문장 1,500개와 31,107개 어절로 이루어진 테스트 집합의 학습 및 평가 결과는 97.337%의 음절 띄어쓰기 태그 분류 정확도를 보였다.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.183-188
/
2006
본 논문에서는 베이지안 네트워크를 기반으로 생성하고 평가한 가상예제를 활용하여 범주속성 및 수치속성 데이터에 대한 분류 성능을 향상시키는 방안을 제안한다. 가상예제를 활용하는 종래의 연구들은 주로 수치 속성 데이터를 대상으로 한 반면 본 연구에서는 범주속성 데이터에 대해서도 가상예제를 적용하여 효과를 확인하였다. 그리고 대상 도메인에 특화된 지식을 활용하여 특정 학습 알고리즘의 성능을 향상시키는 것을 목표로 한 기존 연구들과는 달리 본 연구에서는 도메인에 특화된 지식을 활용하는 대신 주어진 훈련 집합을 기반으로 만든 베이지안 네트워크로부터 가상예제를 생성하고, 그 예제가 네트워크의 조건부 우도를 증가시키는데 기여할 경우 유용한 것으로 선별한다. 이러한 생성 및 선별과정을 반복하여 적절한 크기의 가상예제 집합을 수집하여 사용한다. 범주 속성 데이터와 수치 속성을 포함한 데이터를 대상으로 한 실험 결과, 여러 가지 학습 모델의 성능이 향상됨을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.670-672
/
2005
자질 선택은 문서 분류와 같이 않은 자질을 사용하는 지도식 기계학습에 관한 연구에서 날로 중요성이 커지고 있다. 특히 특허문서 분류와 같은 작업은 기존의 문서 분류보다도 훨씬 많은 자질과 분류 범주를 가지기 때문에 전체 문서의 특징을 드러내는 적절한 부분집합을 선택해 학습하는 것이 절실하다. 전통적인 자질선택 방법은 필터라는 방법으로서 빠르지만 임계값을 정하기가 어렵다는 문제가 있다. 한편 최근에 많이 연구되는 래퍼는 일반적으로 필터보다. 좋은 성능을 보이지만 자질의 개수가 많을수록 시간이 오래 걸린다는 단점이 있다. 본 연구에서는 필터와 래퍼를 상호 보완적으로 결합하여 최적의 필터를 자동적으로 찾는 래퍼를 제안한다. 실험 결과, 제안한 방법이 효과적으로 자질 집합을 선택하는 것을 확인할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.691-693
/
2005
본 연구에서는 FMM 신경망의 학습 알고리즘에서 하이퍼박스 확장과정에 수반되는 중첩현상을 분석하고, 이에 대한 축소 과정의 특성과 이를 보완하기 위한 새로운 활성화 함수에 관하여 고찰한다. 하이퍼박스 중첩 영역에 속하는 패턴 데이터는 그 분류 결과가 왜곡될 수 있다. 왜냐하면 학습과정에서 하이퍼박스상의 특징범위는 특징값의 빈도요소를 고려하지 않음으로 인하여 극소수의 비정상적 데이터에 관해서도 동일 수준으로 민감하게 확장되기 때문이다. 본 논문에서는 특징집합에서 가중치와 빈도요소를 반영하는 모델로서 이러한 중첩현상의 영향을 개선하는 방법론을 소개한다. 제안된 이론은 단순화된 패턴집합에 대하여 그 유용성을 이론적으로 고찰하며, 실제 패턴분류 문제에 적용하여 실험적으로 평가한다.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.1
/
pp.15-21
/
2015
In support vector machine, the values of parameters included in kernels affect strongly generalization ability. It is often difficult to determine appropriate values of those parameters in advance. It has been observed through our studies that the burden for deciding the values of those parameters in support vector regression can be reduced by utilizing ensemble learning. However, the straightforward application of the method to large scale problems is too time consuming. In this paper, we propose a method in which the original data set is decomposed into a certain number of sub data set in order to reduce the burden for parameter tuning in support vector regression with large scale data sets and imbalanced data set, particularly.
In this paper, we define the large word sets which are noble variations the large item sets in mining association rules, and improve the accuracy for NaiveBayes based on the defined large word sets. In order to use them, a document is divided into the several paragraphs, and then each paragraph can be transformed as the transaction by extracting words in it. The proposed method was implemented by using Al:Categorizer framework and its accuracies were measured by the experiments for reuter-21578 data set. The results of the experiments show that the proposed method improves the accuracy of the conventional NaiveBayes.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.2
/
pp.76-82
/
2017
Malware, including ransomware to quickly detect, in this study, to provide an analysis method of malicious code through the image analysis that has been learned in the deep learning of artificial intelligence. First, to analyze the 2,400 malware data, and learning in artificial neural network Convolutional neural network and to image data. Extracts subgraphs to convert the graph of abstracted image, summarizes the set represent malware. The experimentally analyzed the malware is not how similar. Using deep learning of artificial intelligence by classifying malware and It shows the possibility of accurate malware detection.
본 논문에서는 휴대용 기기 사용자들의 이동 궤적을 기록한 대용량의 GPS 위치 데이터 집합으로부터 각 사용자의 이동 패턴 모델을 학습해내고, 이 모델을 적용하여 각 사용자의 다음 방문 장소를 효율적으로 예측할 수 있는 맵리듀스 기반의 분산 데이터 마이닝 시스템을 소개한다. 본 시스템은 크게 사용자별 이동 패턴 모델을 학습하는 후단부와 실시간으로 다음 방문 장소를 예측하는 전단부로 구성된다. 이 중에서 후단부는 주요 장소 추출, 이동 궤적 변환, 이동 패턴 모델 학습 등 총 3개의 맵리듀스 작업 모듈들로 구성된다. 이에 반해, 본 시스템의 전단부는 이동 경로 후보군 생성, 다음 장소 예측 등 총 2개의 맵리듀스 작업 모듈들로 구성된다. 그리고 본 시스템을 구성하는 각각의 작어마다 분산처리를 극대화할 수 있도록 맵과 리듀스 함수를 설계하였다. 끝으로, 대용량의 GeoLife 벤치마크 데이터 집합을 이용하여 본 논문에서 소개한 시스템의 예측 성능을 분석하기 위한 실험을 수행하였고, 이를 통해 본 시스템의 높은 성능을 확인할 수 있었다.
In order to efficeintly manage a battery, it is important to accurately estimate and manage the SOH(State of Health) and RUL(Remaining Useful Life) of the batteries. Even if the batteries are of the same type, the characteristics such as facility capacity and voltage are different, and when the battery for the training model and the battery for prediction through the model are different, there is a limit to measuring the accuracy. In this paper, We proposed the entropy index using voltage distribution and discharge time is generalized, and four batteries are defined as a training set and a test set alternately one by one to predict the health status of batteries through linear regression analysis of machine learning. The proposed method showed a high accuracy of more than 95% using the MAPE(Mean Absolute Percentage Error).
Hyeoung-Cheol Park;Eun-Su Yun;Min-Jeong Kim;Hui-Jae Bae;Yu-Jin Shin;Jee-Hang Lee
Annual Conference of KIPS
/
2023.11a
/
pp.672-674
/
2023
본 논문은 뉴로-심볼릭 구조를 바탕으로 일반 텍스트로부터 온톨로지 생성이 가능한 심층 신경망 기반 온톨로지 추출기를 제안한다. 온톨로지 추출 단계를 (i) 온톨로지 학습 및 (ii) 온톨로지 생성의 2 단계로 상정, (i) 일반 텍스트로부터 문장 구조 및 논리적 관계를 학습하는 트랜스포머 기반 심층 생성 신경망 출력을 이용하여 (ii) 계층적으로 결합한 심볼릭 추론기로 온톨로지를 생성하는 뉴로-심볼릭 구조 온톨로지 추출기를 구현하였다. 1800 개 훈련 집합으로 학습 후 200 개 테스트 집합으로 평가한 결과, 정확도 91.9%, Precision 100%, Recall 99.1%로 비교 모델 OpenIE 의 성능에 비해서 각각 83.8%, 1.8%, 3.5% 개선된 것을 확인하였다. 정성적 품질에 있어서, 복잡한 문장 (예: 관계대명사, 접속사, 중첩 구조)에서도 비교 모델에 비해 더 정밀한 온톨로지 생성 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.