• Title/Summary/Keyword: 학습 집합

Search Result 554, Processing Time 0.025 seconds

An Implementation of Neuro-Fuzzy Based Land Convert Pattern Classification System for Remote Sensing Image (뉴로-퍼지 알고리즘을 이용한 원격탐사 화상의 지표면 패턴 분류시스템 구현)

  • 이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.472-479
    • /
    • 1999
  • In this paper, we propose a land cover pattern classifier for remote sensing image by using neuro-fuzzy algorithm. The proposed pattem classifier has a 3-layer feed-forward architecture that is derived from generic fuzzy perceptrons, and the weights are con~posed of h u y sets. We also implement a neuro-fuzzy pattern classification system in the Visual C++ environment. To measure the performance of this, we compare it with the conventional neural networks with back-propagation learning and the Maximum-likelihood algorithms. We classified the remote sensing image into the eight classes covered the majority of land cover feature, selected the same training sites. Experimental results show that the proposed classifier performs well especially in the mixed composition area having many classes rather than the conventional systems.

  • PDF

Hierarchical Multi-Classifier for the Mixed Character Code Set (홍용 문자 코드 집합을 위한 계층적 다중문자 인식기)

  • Kim, Do-Hyeon;Park, Jae-Hyeon;Kim, Cheol-Ki;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1977-1985
    • /
    • 2007
  • The character recognition technique is one of the artificial intelligence and has been widely applied in the automated system robot HCI(Human Computer Interaction), etc. This paper introduces the character set and the representative character that can be used in the recognition of the mage ROI. The character codes in this ROI include the digit, symbol, English and Hereat etc. We proposed the efficient multi-classifier structure by combining the small-size classifiers hierarchically. Moreover, we generated each small-size classifiers by delta-bar-delta learning algorithm. We tested the performance with various kinds of images and achieved the accuracy of 99%. The proposed multi-classifier showed the efficiency and the reliability for the mixed character code set.

CNN-based Android Malware Detection Using Reduced Feature Set

  • Kim, Dong-Min;Lee, Soo-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.19-26
    • /
    • 2021
  • The performance of deep learning-based malware detection and classification models depends largely on how to construct a feature set to be applied to training. In this paper, we propose an approach to select the optimal feature set to maximize detection performance for CNN-based Android malware detection. The features to be included in the feature set were selected through the Chi-Square test algorithm, which is widely used for feature selection in machine learning and deep learning. To validate the proposed approach, the CNN model was trained using 36 characteristics selected for the CICANDMAL2017 dataset and then the malware detection performance was measured. As a result, 99.99% of Accuracy was achieved in binary classification and 98.55% in multiclass classification.

Automatic Text Categorization Using Hybrid Multiple Model Schemes (하이브리드 다중모델 학습기법을 이용한 자동 문서 분류)

  • 명순희;김인철
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.4
    • /
    • pp.35-51
    • /
    • 2002
  • Inductive learning and classification techniques have been employed in various research and applications that organize textual data to solve the problem of information access. In this study, we develop hybrid model combination methods which incorporate the concepts and techniques for multiple modeling algorithms to improve the accuracy of text classification, and conduct experiments to evaluate the performances of proposed schemes. Boosted stacking, one of the extended stacking schemes proposed in this study yields higher accuracy relative to the conventional model combination methods and single classifiers.

Combining Imitation Learning and Reinforcement Learning for Visual-Language Navigation Agents (시각-언어 이동 에이전트를 위한 모방 학습과 강화 학습의 결합)

  • Oh, Suntaek;Kim, Incheol
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.559-562
    • /
    • 2020
  • 시각-언어 이동 문제는 시각 이해와 언어 이해 능력을 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각-언어 이동 에이전트를 위한 새로운 학습 모델을 제안한다. 이 모델은 데모 데이터에 기초한 모방 학습과 행동 보상에 기초한 강화 학습을 함께 결합한 복합 학습을 채택하고 있다. 따라서 이 모델은 데모 데이타에 편향될 수 있는 모방 학습의 문제와 상대적으로 낮은 데이터 효율성을 갖는 강화 학습의 문제를 상호 보완적으로 해소할 수 있다. 또한, 제안 모델은 서로 다른 두 학습 간에 발생 가능한 학습 불균형도 고려하여 손실 정규화를 포함하고 있다. 또, 제안 모델에서는 기존 연구들에서 사용되어온 목적지 기반 보상 함수의 문제점을 발견하고, 이를 해결하기 위해 설계된 새로은 최적 경로 기반 보상 함수를 이용한다. 본 논문에서는 Matterport3D 시뮬레이션 환경과 R2R 벤치마크 데이터 집합을 이용한 다양한 실들을 통해, 제안 모델의 높은 성능을 입증하였다.

Learning Action Selection ,Network Using Learning Classifier System (Learning Classifier System을 이용한 행동 선택 네트워크의 학습)

  • 윤은경;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.404-406
    • /
    • 2003
  • 행동 기반 인공지능은 기본 행동들의 집합으로부터 적절한 행동을 선택함으로써 복잡한 행동을 하도록 하는 방식이다. 행동 기반 시스템은 1980년대에 시작되어 이제는 많은 에이전트 시스템에 사용되고 있다. 본 논문에서는 기존의 P. Maes가 제안한 행동 선택 네트워크에 Learning Classifier System을 이용한 학습 기능을 부가하여, 변하는 환경에 적절히 적응하여 행동의 시퀀스를 생성할 수 있는 방법을 제안하다. 행동 선택 네트워크는 주어진 문제에 따라 노드 간 연결을 설계자가 미리 설정하도록 하는데, 해결해야 할 문제가 변함에 따라 네트워크에서의 연결 형태가 변형될 필요가 있다. Khepera 로봇을 이용한 시뮬레이션 결과, 행동 선택 네트워크에서의 학습이 유용함을 확인할 수 있었다.

  • PDF

Designand Implementation of Web-Based Blood-Cell Analysis System for Pathology Diagnosis (병리진단을 위한 웹기반 혈액영상 분석시스템의 설계 및 구현)

  • 김경수;이영신;김용국;이윤배;김판구
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.333-337
    • /
    • 1998
  • 의학분야에서 컴퓨터 활용은 단순히 처리할 데이터의 자동화뿐만 아니라 각종 의학영상들을 자동으로 처리함으로서 의사의 진단을 도와주는 형태로 발전되어 가고 있다. 본 논문에서는 병원의 임상병리과에서 번번히 수행하는 혈액검사를 자동화하기 위한 것으로 혈액을 자동 분석하는 웹 기반 분석시스템을 구축하였다. 이를 위해 본 논문에서는 혈액 영상으로부터 특징을 추출하기 위한 단계를 서술하고 세포분류를 위한 다층 신경망을 이용해 구현한 내용을 보인다. 또한 본 연구의 결과로 신경망의 학습 효율을 높이기 위한 전처리로서 학습 데이터에 대해 러프 집합 이론을 적용하여 학습 데이터의 차원을 효과적으로 줄일 수 있었다.

  • PDF

Online object tracking via convolutional neural network (합성곱 신경망을 통한 온라인 객체 추적)

  • Gil, Jong in;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.11-12
    • /
    • 2017
  • 본 논문에서는 부류가 정해진 훈련 집합이 불필요한 온라인 학습 기반 추적 기법을 제안한다. 추적기의 학습을 위해 합성곱 신경망(convolutional neural network: CNN)을 이용하였다. 추적영상으로부터 직접 훈련 샘플을 수집함으로써 분류기 학습을 위한 비용을 감소시킬 수 있었고, 목표 영상에 적응적인 객체 모델을 생성할 수 있다. 실험 결과를 통해 제안하는 방법이 우수한 성능을 보임을 입증하였다.

  • PDF

A Linguistic Study on the Writing of Section 'Sets' in Middle School Mathematics Textbooks of 7-ga (중학교 수학교과서 7-가의 집합 단원 기술에 관한 언어학적 고찰)

  • Jeong Kwang-Taek
    • School Mathematics
    • /
    • v.8 no.2
    • /
    • pp.177-213
    • /
    • 2006
  • It is well known that the set theory is very fundamental and important in modern mathematics. So, the middle school mathematics begins with section 'Sets' which is introduced from the 2nd curriculum change. Therefore, it is natural to arrange the set theory at the beginning of middle school mathematics curriculum. But most of text-books develop the set theory section very rigorously and tightly under less considering the student's language level. The purpose of this study is to have effective learning of set theory section for every middle school students, we analysis the definitions and writing contents of section 'Sets' in each textbooks as a linguistic viewpoint, and investigate its further uses in each textbooks.

  • PDF

Selecting Multiple Query Examples for Active Learning (능동적 학습을 위한 복수 문의예제 선정)

  • 강재호;류광렬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.541-543
    • /
    • 2004
  • 능동적 학습(active learning)은 제한된 시간과 인력으로 가능한 정확도가 높은 분류기(classifier)를 생성하기 위하여, 훈련집합에 추가할 예제 즉 문의예제(query example)의 선정과 확장된 훈련집합으로 다시 학습하는 과정을 반복하여 수행한다. 능동적 학습의 핵심은 사용자에게 카테고리(category) 부여를 요청할 문의예제를 선정하는 과정에 있다. 효과적인 문의예제를 선정하기 위하여 다양한 방안들이 제안되었으나, 이들은 매 문의단계마다 하나의 문의예제를 선정하는 경우에 가장 적합하도록 고안되었다. 능동적 학습이 복수의 예제를 사용자에게 문의할 수 있다면, 사용자는 문의예제들을 서로 비교해 가면서 작업할 수 있으므로 카테고리 부여작업을 보다 빠르고 정확하게 수행할 수 있을 것이다. 또한 충분한 인력을 보유한 상황에서는, 카테고리 부여작업을 병렬로 처리할 수 있어 전반적인 학습시간의 단축에 큰 도움이 될 것이다. 하지만, 각 예제의 문의예제로써의 적합 정도를 추정하면 유사한 예제들은 서로 비슷한 수준으로 평가되므로, 기존의 방안들을 복수의 문의예제 선정작업에 그대로 적용할 경우, 유사한 예제들이 문의예제로 동시에 선정되어 능동적 학습의 효율이 저하되는 현상이 나타날 수 있다. 본 논문에서는 특정 예제를 문의예제로 선정하면 이와 일정 수준이상 유사한 예제들은 해당 예제와 함께 문의예제로 선정하지 않음으로써, 이러한 문제점을 극복할 수 있는 방안을 제안한다. 제안한 방안을 문서분류 문제에 적용해 본 결과 기존 문의예제 선정방안으로 복수 문의예제를 선정할 때 발생할 수 있는 문제점을 상당히 완화시킬 있을 뿐 아니라, 복수의 문의예제를 선정하더라도 각 문의 단계마다 하나의 예제를 선정하는 경우에 비해 큰 성능의 저하가 없음을 실험적으로 확인하였다./$m\ell$로 나타났다.TEX>${HCO_3}^-$ 이온의 탈착은 서서히 진행되었다. R&D investment increases are directly not liked to R&D productivities because of delays and side effects during transition periods between different stages of technology development. Thus, It is necessary to develope strategies in order to enhance efficiency of technological development process by perceiving the switching pattern. 기여할 수 있을 것으로 기대된다. 것이다.'ity, and warm water discharges from a power plant, etc.h to the way to dispose heavy water adsorbent. Through this we could reduce solid waste products and the expense of permanent disposal of radioactive waste products and also we could contribute nuclear power plant run safely. According to the result we could keep the best condition of radiation safety super vision and we could help people believe in safety with Radioactivity wastes control for harmony with Environ

  • PDF