• Title/Summary/Keyword: 학습 제어

Search Result 1,238, Processing Time 0.022 seconds

Nonlinear Adaptive PID Controller based on a Cell-mediated Immune Response and a Gradient Descent Learning (세포성 면역 반응과 경사감소학습에 의한 비선형 적응 PID 제어기)

  • Park Jin-Hyun;Lee Tae-Hwan;Choi Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.88-95
    • /
    • 2006
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They we difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

A Study on Position Control of 2-Mass Resonant System Using Iterative Learning Control (반복 학습 제어를 이용한 2관성 공진계의 위치 제어에 관한 연구)

  • Lee, Hak-Sung;Moon, Seung-Bin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.693-698
    • /
    • 2004
  • In this paper, an iterative learning control method is applied to suppress a vibration of a 2-mass system which has a flexible coupling between a load and a motor. More specifically, conditions for the load speed without vibration are derived based on the steady-state condition. And the desired motor position trajectory is synthesized based on the relation between the load and motor speed. Finally, a PD-type iterative learning control law is applied for the desired motor position trajectory. Since the learning law applied for the desired trajectory guarantees the perfect tracking performance, the resulting load speed shows no vibration even when there exist model uncertainties. A modification to the learning law is also Presented to suppress undesired effects of an initial position error, The simulation results show the effectiveness of the proposed learning method.

A Method of Self-Organizing for Fuzzy Logic Controller Through Learning of the Proper Directioin of Control (바람직한 제어 방향의 학습을 통한 퍼지 제어기의 자기 구성방법)

  • 이연정;최봉열
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.21-33
    • /
    • 1997
  • In this paper, a method of self-organizing for fuzzy logic controller(FLC) through learning of the proper direction of coritrol is proposed. In case of designing a self-organizing FLC for unknown dynamic plants based on the gradient descent method, it is difficult to identify the desirable direction of the change of control inpul. in which the error would be decreased. To resolve this problem, we propose a method as fo1lows:at first, assign representative values for the direction of change of error with respect to control input to each partitioned region of the states, and then, learn the fuzzy control rules using the reinforced representative values through iterative trials. 'The proposed self-organizing FLC has simple structure and it is easy to design. The validity of the proposed method is proved by the computer simulation for an inverted pendulum system.

  • PDF

D.C. Motor Speed Control by Learning Gain Regulator (학습이득 조절기에 의한 직류 모터 속도제어)

  • Park, Wal-Seo;Lee, Sung-Su;Kim, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.82-86
    • /
    • 2005
  • PID controller is widely used as automatic equipment for industry. However when a system has various characters of intermittence or continuance, a new parameter decision for accurate control is a bud task. As a method of solving this problem, in this paper, a teaming gain regulator as PID controller functions is presented. A propriety teaming gain of system is decided by a rule of Delta learning. The function of proposed loaming gain regulator is verified by simulation results of DC motor.

Luxo character control using deep reinforcement learning (심층 강화 학습을 이용한 Luxo 캐릭터의 제어)

  • Lee, Jeongmin;Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • Motion synthesis using physics-based controllers can generate a character animation that interacts naturally with the given environment and other characters. Recently, various methods using deep neural networks have improved the quality of motions generated by physics-based controllers. In this paper, we present a control policy learned by deep reinforcement learning (DRL) that enables Luxo, the mascot character of Pixar animation studio, to run towards a random goal location while imitating a reference motion and maintaining its balance. Instead of directly training our DRL network to make Luxo reach a goal location, we use a reference motion that is generated to keep Luxo animation's jumping style. The reference motion is generated by linearly interpolating predetermined poses, which are defined with Luxo character's each joint angle. By applying our method, we could confirm a better Luxo policy compared to the one without any reference motions.

A Study on the Steering Control of an Autonomous Robot Using SOM Algorithms (SOM을 이용한 자율주행로봇의 횡 방향 제어에 관한 연구)

  • 김영욱;김종철;이경복;한민홍
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.58-65
    • /
    • 2003
  • This paper studies a steering control method using a neural network algorithm for an intelligent autonomous driving robot. Previous horizontal steering control methods were made by various possible situation on the road. However, it isn't possible to make out algorithms that consider all sudden variances on the road. In this paper, an intelligent steering control algorithm for an autonomous driving robot system is presented. The algorithm is based on Self Organizing Maps(SOM) and the feature points on the road are used as training datum. In a simulation test, it is available to handle a steering control using SOM for an autonomous steering control. The algorithm is evaluated on an autonomous driving robot. The algorithm is available to control a steering for an autonomous driving robot with better performance at the experiments.

  • PDF

A Study on the Design of Home Network Controlling System using Active Action Pattern Analysis Algorithm (능동적 행동 패턴 분석 알고리즘을 이용한 홈 네트워크 제어 시스템 구축에 관한 연구)

  • Sung, Kyung-Sang;Oh, Hae-Seok
    • KSCI Review
    • /
    • v.15 no.1
    • /
    • pp.125-129
    • /
    • 2007
  • 지능형 홈 네트워크 서비스의 일반적 보급화로 사용자의 필요와 욕구에 밀착한 개인화 서비스를 위한 사용자의 프로파일 및 다양한 상태 정보, 센서 및 기타 환경정보를 통한 동적 상황인지가 가능토록 하는 상황인지(context-aware) 서비스에 대한 필요성이 증대되고 있다. 사용자 행위 학습에 따른 지능적 자동 제어 시스템 구축에서 먼저 고려해야 할 사항은 사용자 행위 학습에 따른 지능적 자동 제어에 대한 기준을 마련하는 것이다. 홈 네트워크 내의 정보가전기기들 환경에 대한 정보를 지속적으로 수집하고 학습 알고리즘을 통하여 분석하며, 분석되어진 정보를 바탕으로 사용자의 성향을 파악하는 것을 주요인으로 간주해야 할 것이다. 이에 따라 본 논문에서는 사용자 능동적 행위에 따른 지능형 홈 제어 시스템을 제안하였다. 또한 지속적인 모니터링을 통하여 사용자의 성향이 파악되면 상황에 따른 최적의 환경을 제공할 수 있도록 홈 네트워크 제어 시스템을 구축하는 것으로 목적으로 하였다. 사용자의 행동 패턴을 분석하고 이를 기반으로 지능적인 서비스를 제공함으로써 사용자 중심의 능동적 서비스 효과들을 얻을 수 있을 것으로 기대한다.

  • PDF

Study on Vibration Suppression of 2-Mass Resonant System Using Iterative Learning Control (반복 학습 제어를 이용한 2관성 공진계의 진동 억제에 관한 연구)

  • 이학성
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2585-2588
    • /
    • 2003
  • 2 관성 공진계는 마른 응답을 위해 제어이득을 크게 하면 공진에 의해 축비틀림 진동이 일어나는 경우가 많다. 본 논문에서는 반복 학습 제어기법을 활용하여 불확실한 모델 계수를 포함하는 2 관성 공진계의 진동억제를 시도한다. 2관성 공진계의 경우 제어 대상이 되는 부하측 속도는 학습 제어로 직접 적용하기가 힘들고 또한 측정 또한 어렵다. 본 논문에서는 부하측 속도와 전동기측 속도간의 관계를 이용하여 직접 부하측 속도를 제어하는 대신 전동기측 속도를 제어하여 간접적으로 부하측 속도를 제어하였다. 제안된 방식은 전형적인 2 관성 공진계에 모의 실험을 통해 적용되었고, 정확한 모델이 없이도 진동 없는 마른 응답특성을 보여준다.

  • PDF

The Symmetry of Cart-Pole System and A Table Look-Up Control Technique (운반차-막대 시스템의 대칭성과 Table Look-Up 제어 기법)

  • Kwon, Sunggyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.290-297
    • /
    • 2004
  • The control laws for cart-pole system are studied to see the schemes on which the control laws are made. Also, the odd symmetry of the relation between the output of the control laws and the system state vector is observed. Utilizing the symmetry in quantizing the system state variables and implementing the control laws into look-up table is discussed. Then, a CMAC is trained for a nonlinear control law for a cart-pole system such that the symmetry is conserved and its learning performance is evaluated. It is found that utilizing the symmetry is to reduce the memory requirement as well as the training period while improving the learning quality in terms of preserving the symmetry.

A Study on the Direct Neural Network Controller of Boiler Turbine (직접신경회로망 제어기를 사용한 보일러 터빈시스템의 제어에 관한 연구)

  • Woo, Joo-Hee;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.654-656
    • /
    • 1997
  • 본 논문에서는 직접신경회로망제어기(DNNC)를 사용하여 결합된 PI제어기의 이득을 구하여 보일러 터빈시스템을 제어하고자 한다. 직접신경회로망제어기는 플랜트의 동특성을 학습시키는 에뮬레이터 없이 제어입력에 대한 플랜트의 동작방향에 대한 정보만을 사용하여 신경회로망을 학습시키고, 이 신경회로망을 사용하여 제어대상 플랜트인 다중입출력플랜트를 제어하기 위하여 결합된 PI 제어기의 이득을 구한다. 컴퓨터 시뮬레이션을 통하여 제안한 알고리즘의 타당성을 입증하고자 한다.

  • PDF