• Title/Summary/Keyword: 학습 데이터

Search Result 6,458, Processing Time 0.036 seconds

Development of Python-based Annotation Tool Program for Constructing Object Recognition Deep-Learning Model (물체인식 딥러닝 모델 구성을 위한 파이썬 기반의 Annotation 툴 개발)

  • Lim, Songwon;Park, Gooman
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.162-164
    • /
    • 2019
  • 본 논문에서는 물체인식 딥러닝 모델 생성에 필요한 라벨링(Labeling)과정에서 사용자가 다양한 기능을 활용하여 효과적인 학습 데이터를 구성할 수 있는 GUI 프로그램을 구현했다. 프로그램의 인터페이스는 파이썬 기반의 GUI 모듈인 Tkinter 를 활용하여, 실시간으로 이미지 데이터를 수집할 수 있는 크롤링(Crawling)기능과 미리 학습된 Retinanet 을 통해 이미지 데이터를 인식함으로써 자동으로 주석(Annotation) 과정을 수행할 수 있는 기능을 구성했다. 또한, 수집한 이미지 데이터를 다양한 효과와 노이즈, 변형 등으로 Augmentation 기능을 추가함으로써, 사용자가 모델을 학습하기 위한 데이터 전처리 단계를 하나의 GUI 프로그램에서 수행할 수 있도록 했다. 또한 사용자가 직접 학습한 모델을 추정 모델(Inference Model)로 변환하여 프로그램에 입력할 수 있도록 설계한다.

  • PDF

A Real-Time Automatic Diagnosis System for Semiconductor Process (반도체 공정 실시간 자동 진단 시스템)

  • 권오범;한혜정;김계영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.241-243
    • /
    • 2003
  • 일반적으로 사용되는 반도체 공정에 대한 진단 기법은 한 공정을 진행하기 전에 테스트 공정을 수행하여 공정의 진행 여부를 결정하고, 한 공정의 진행을 완료한 후에 다시 테스트 공정을 수행하여 공정의 결과를 진단하는 방법이다. 본 논문에서 제안하는 실시간 자동 진단 시스템은 기존 방법의 문제점인 자원의 낭비를 막고, 실시간으로 진단함으로써 시간의 낭비를 막는 진단 시스템을 제안한다. 실시간 자동 진단 시스템은 크게 시스템 초기화 단계, 학습 단계 그리고 예측 단계로 나누어진다. 초기화 단계는 진단할 공정에 대한 사전 입력값을 받아 시스템을 초기화하는 과정으로 공정장비 파라미터별 중요도 자동 설정 과정과 초기화 클러스터링으로 이루어진다. 학습 단계는 실시간으로 저장된 공정장치별 데이터와 계측기로부터 획득된 데이터를 이용하여 최적의 유사 클래스를 결정하는 단계와 결정된 유사 클래스를 이용하여 가중치를 학습하는 단계로 나누어진다. 예측 단계는 공정 진행 중 획득된 실시간 데이터를 학습 단계에서 결정된 파라미터별 가중치를 사용하여 공정에 대한 진단을 한다. 본 시스템에서 사용하는 클러스터링 알고리즘은 DTW(Dynamic Time Warping)를 이용하여 파라미터 데이터에 대한 특징을 추출하고 LBG(Linde, Buzo and Gray) 알고리즘을 사용하여 데이터를 군집화 한다.

  • PDF

Design and Implementation of an Application System of Web-Based leaching Plans using XML (XML을 이용한 웹기반 학습지도안 활용 시스템의 설계 및 구현)

  • 엄윤주;김학경;김진호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.700-702
    • /
    • 2002
  • 학습지도안은 교사와 학습자의 학습활동을 효과적으로 진행하기 위한 조직적이고 구체적인 수업 진행 계획을 의미한다 이러한 학습지도안을 위한 시스템으로 학교현장에 보급된 '교무업무지원 시스템'의 '교수-학습' 메뉴와 웹을 통한HTML 형식과 파일 형식의 학습지도안 공유가 이루어지기도 한다. 그러나 교무업무지원 시스템은 데이터의 형태를 다양하게 할 수 없으며 공유를 할 수 없는 단점이 있다. 또한 HTML 형식과 파일을 공유하는 방법은 다른 형태의 문서로 재사용하기 어렵고 유연성이 떨어진다는 단점이 있다. 본 연구에서는 데이터와 프리젠테이션을 분리함으로써 데이터의 재사용을 높이고 하나의 데이터 소스를 이용하여 다양한 프리젠테이션을 가진 수 있는 XML을 이용한 웹기반의 학습지도안 활용 시스템을 제안한다. 이로써 XML을 이용한 학습지도안 문서의 한 번의 입력 작업으로 데이터의 변통 없이 XML의 적용만으로도, 교사와 학생의 요구에 맞는 여러 형태의 학습 자료로 활용할 수 있도록 만든다

  • PDF

Mapping Wavelet Feature Space to KANSEI Space in Image Using Neural Networks (신경망을 이용한 영상의 웨이블렛 특징공간과 감성공간의 매핑)

  • 정윤경;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.532-534
    • /
    • 2000
  • 복합적인 감성기반 영상 검색 시스템을 구축하기 위해서는 감성속성으로 영상을 찾는 검색은 물론이고, 주어진 영상의 감성특성을 알아내는 과정이 필요하다. 본 논문에서는 영상의 특성으로부터 감성을 매핑하는 신경망을 구축하고 다양한 실험으로 그 가능성을 보인다. 여기에서 영상특징으로 웨이블렛계수와 위치정보를 사용했고, 감성공간으로는 SD법으로부터 14개의 형용사쌍을 추출했다. 이 두 공간의 매핑에 사용된 신경망의 입력으로 영상에서 얻은 RGB 색상당 36개의 총 108개의 웨이블렛 개수를 사용했고, 출력은 14개의 감속속성당 7등급으로 총 98개로 구성했다. 총 6명이 영상을 보고 평가한 감성평가데이터중에서 2명이 각각 평가한 데이터로 신경망을 학습시키고 나머지 10개로 테스트한 경우는 90%이상의 인식률을 보였다. 4명이 각각 90개씩 평가한 데이터로 신경망을 학습시키고 나머지 10개로 테스트한 경우는 90%의 인식률을 보였다. 또한 공통된 감성을 신경망을 통해 인식할 수 있는지 판단하기 위해 600개씩 2명으로부터 얻은 1200개의 데이터에 대해서 1000개를 학습시키고 200개를 테스트하고, 100개씩 4명으로부터 데이터에 대해서 360개를 학습시키고 40개를 테스트해 본 결과, 전자의 경우 오류율 8, 후자의 경우 0.7~0.8 범위였다.

  • PDF

Kernel Perceptron Boosting for Effective Learning of Imbalanced Data (불균형 데이터의 효과적 학습을 위한 커널 퍼셉트론 부스팅 기법)

  • 오장민;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.304-306
    • /
    • 2001
  • 많은 실세계의 문제에서 일반적인 패턴 분류 알고리즘들은 데이터의 불균형 문제에 어려움을 겪는다. 각각의 학습 예제에 균등한 중요도를 부여하는 기존의 기법들은 문제의 특징을 제대로 파악하지 못하는 경우가 많다. 본 논문에서는 불균형 데이터 문제를 해결하기 위해 퍼셉트론에 기반한 부스팅 기법을 제안한다. 부스팅 기법은 학습을 어렵게 하는 데이터에 집중하여 앙상블 머신을 구축하는 기법이다. 부스팅 기법에서는 약학습기를 필요로 하는데 기존 퍼셉트론의 경우 문제에 따라 약학습기(weak learner)의 조건을 만족시키지 못하는 경우가 있을 수 있다. 이에 커널을 도입한 커널 퍼셉트론을 사용하여 학습기의 표현 능력을 높였다. Reuters-21578 문서 집합을 대상으로 한 문서 여과 문제에서 부스팅 기법은 다층신경망이나 나이브 베이스 분류기보다 우수한 성능을 보였으며, 인공 데이터 실험을 통하여 부스팅의 샘플링 경향을 분석하였다.

  • PDF

A development of App to gather data for machine learning on Korean language writing recognition (한글 필기 인식을 위한 기계학습 용 데이터 수집 앱 개발)

  • Bae, Junwoo;Shim, Hyundo;Kim, Sungsuk;Sung, Mi-Young
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.753-754
    • /
    • 2018
  • 최근 인공지능에 대한 관심이 증가하고 관련 연구가 활발히 진행됨에 따라, 기존 연구분야에도 이를 적용하고자 하는 시도가 증가하고 있다. 본 연구진도 한글 글씨를 인식하기 위해 기계학습을 적용하고자 하며, 그에 따라 본 연구에서는 초기 연구로서 사용자 필기 데이터를 수집하기 위한 안드로이드용 앱을 개발하였다. 최종 대상이 한글 공부를 시작하는 유아로 선정하였으므로, 그에 적절하게 학습 앱의 Activity를 구성하였다. 입력한 한글 데이터 분만 아니라 하나의 글자에 대한 초성, 중성, 종성별로 데이터를 별도로 수집하여 추후 활용할 수 있게 구성하였다. 즉, 학습과정에서 발생한 데이터는 이미지와 이벤트 두 가지 모두 저장하여 추후 최종 연구에 활용하고자 하였다.

Landmark recognition through image searcher (이미지 검색기를 통한 랜드마크 인식)

  • Gi-Duk Kim;Geun-Hoo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.313-315
    • /
    • 2024
  • 본 논문에서는 이미지 검색기를 통한 랜드마크 인식 방법을 제안한다. 특정 랜드마크 데이터세트에서 라벨링을 하지 않은 비지도 학습을 통해서 이미지에서 랜드마크의 클래스 분류를 위한 특징을 추출한다. 학습된 모델을 랜드마크 데이터세트인 Paris6k 데이터세트와 Oxford5k 데이터세트에 적용하여 랜드마크 인식 정확도를 확인하였다. 성능과 속도를 강화하기 위해 이미지 특징 추출 모델로 ResNet 대신에 YOLO에서 사용된 CSPDarknet-53을 사용하여 모델의 크기를 줄이고 랜드마크 인식 정확도를 높였다. 그리고 모델로부터 추출된 특징의 수를 줄여 이미지 검색 시 소요되는 시간을 감소시켰다. 학습된 모델로 rOxford5k 데이터 세트에 적용 시 mAP 80.37, rParis6k에서 mAP 89.07을 얻었다.

  • PDF

A Study on LSTM Learning for Detecting Anomalous Trajectories of Protected Individuals by using GPS (신변보호자 경로이탈 감지를 위한 GPS 기반 LSTM 학습 연구 )

  • Jihyoung Kim;Jaehyun Yoo
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.633-634
    • /
    • 2024
  • 본 연구는 LSTM 모델이 수용 가능한 익명 보행자의 GPS 경로 범위와 훈련 데이터 셋의 크기에 대한 양상 분석을 목적으로 한다. 시계열 데이터인 GPS 경로 그리고 순환 신경망 LSTM 과 입력 구조를 이해하고, 두 가지 실험을 설계하여 LSTM 의 훈련 데이터 셋 수용을 파악한다. 실험에서는 장거리 데이터 셋을 학습한 모델과 그렇지 않은 모델을 비교하고, 훈련 데이터 셋 크기에 따른 학습 모델의 예측 값을 비교한다. 두 실험을 통해 GPS 경로 범위와 학습 가능한 경로의 가짓수에 대한 비교 분석 결과를 제시한다.

A Query Processing Method for Hierarchical Structured e-Learning System (계층적으로 구조화된 이러닝 시스템을 위한 질의 처리 기법)

  • Kim, Youn-Hee;Kim, Jee-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.189-201
    • /
    • 2011
  • In this paper, we design an ontology which provides interoperability by integrating typical metadata specifications and defines concepts and semantic relations between concepts that are used to describe metadata for learning objects in university courses. And we organize a hierarchical structured e-Learning system for efficient retrieval of learning objects on many local storages that use different specifications to describe metadata and propose a query processing method based on inferences. The proposed e-Learning system can provide more accurate and satisfactory retrieval service by using the designed ontology because both learning objects that be directly connected to user queries and deduced learning objects that be semantically connected to them are retrieved.

Deep Learning based x4 and x8 Super-Resolution for Cultural Property Images (딥러닝 기반 문화재 영상에 대한 4 배 및 8 배 초해상화)

  • Son, Chaeyeon;Kim, Soo Ye;Kim, Juyoung;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.118-122
    • /
    • 2020
  • 문화재 영상 데이터는 방대한 양으로 인해 고해상도로 모두 저장이 어렵거나 시간이 지나 상대적으로 화질이 낮은 영상들이 다수 존재하기에 초해상화가 필요한 상황이 많다. 따라서 본 논문에서 처음으로 문화재 영상에 특화된 4 배 및 8 배 딥러닝 기반 초해상화 방식을 제안한다. 문화재 영상 데이터는 배경이 단조롭고 물체가 영상 중간에 위치한다는 특징이 있어 이를 고려해 중간 부분에서만 패치를 추출하는 방식을 적용하여 의미 있는 패치로 학습이 되도록 한다. 또 자연 영상 데이터 셋인 DIV2K 를 사용해 학습하는 방식과 직접 구성한 문화재 데이터 셋을 이용해 학습하는 방식, 그 둘을 적절히 함께 사용하여 학습하는 전이 학습 방법까지 세 가지로 학습하여 초해상화의 성능을 향상시키는 방법을 제안한다. 그 결과, 쌍삼차 보간법(Bicubic interpolation)보다 4 배 초해상화에서는 약 1.25dB, 8 배 초해상화에서는 약 1.26dB 의 성능 개선을 확인하였으며, 단순 DIV2K 로 학습한 방식보다는 4 배에서는 0.06dB, 8 배에서는 0.17dB 의 성능 개선을 확인하였다.

  • PDF