Annual Conference on Human and Language Technology
/
2021.10a
/
pp.548-553
/
2021
비디오 질의 응답은 입력으로 주어진 비디오와 질문에 적절할 정답을 제공하기 위해 텍스트, 이미지 등 다양한 정보처리가 요구되는 대표적인 multi-modal 문제이다. 질의 응답 시스템은 질의 응답의 성능을 높이기 위해 다수의 서로 다른 응답 모듈을 사용하기도 하며 생성된 정답 후보군 중 가장 적절할 정답을 선택하는 정답 선택 모듈이 필요하다. 정답 선택 모듈은 응답 모듈의 서로 다른 관점을 고려하여 응답 선택을 선택할 필요성이 있다. 하지만 응답 모듈이 black-box 모델인 경우 정답 선택 모듈은 응답 모듈의 parameter와 예측 분포를 통해 지식을 전달 받기 어렵다. 그리고 학습 데이터셋은 응답 모듈이 학습에 사용했기 때문에 과적합 문제로 각 모듈의 관점을 학습하기엔 어려우며 학습 데이터셋 이외 비교적 적은 데이터셋으로 학습해야 하는 문제점이 있다. 본 논문에서는 정답 선택 성능을 높이기 위해 전이 학습 기반의 멀티모달 퓨전 정답 선택 모델을 제안한다. DramaQA 데이터셋을 통해 성능을 측정하여 제안된 모델의 우수성을 실험적으로 증명하였다.
본 연구에서는 Lasso Regression을 기반으로 하여 지역 경제 성장과 비만율을 예측한다. 연구는 3단계로 나누어 진행된다. 우선 지역성장을 대변할 수 있는 가상의 GDP 수치를 구한다. 그 다음 가상의 GDP 수치와 비만율 데이터를 이용하여 학습모델을 만든다. 마지막으로 이전의 데이터를 이용하여 앞으로의 성장을 예측하고 학습모델에 적용하여 비만율을 예측한다. 본 연구의 데이터는 학습데이터와 실험데이터를 구성된다. 학습데이터로는 국내의 8도 중 하나인 강원도의 데이터를 이용하며 실험데이터로는 강릉과 원주의 데이터를 이용한다. 평가 비교 대상으로는 과거의 흐름을 반영하는 최소자승법 예측기법을 선정하여 비교한다. 연구 결과 강릉의 경우 비교 데이터와의 오차율 평균은 1.22%로 큰 차이가 없음을 알 수 있다. 따라서 본 연구에서 제안하는 방법이 과거의 흐름을 기반으로 작성됨을 알 수 있다. 하지만 단순히 과거의 흐름만을 통해 예측하는 것은 여러 요소가 복합적으로 작용하는 비만율 예측에 알맞지 않기 때문에 본 연구 방법이 유의미하다고 여겨진다.
Lee, Seon-Gyeong;Jeong, Chi Yoon;Moon, KyeongDeok;Kim, Chae-Kyu
Annual Conference of KIPS
/
2020.05a
/
pp.446-450
/
2020
딥러닝 기반의 영상 분석 방법들은 많은 양의 학습 데이터가 필요하며, 학습 데이터 구축에는 많은 시간과 노력이 소요된다. 특히 객체 검출 분야의 경우 영상 내 객체의 위치, 크기, 범주 등의 정보가 모두 필요하여 학습 데이터 구축에 더 많은 어려움이 있으며, 이를 해결하기 위해 최근 이미지 합성기반 데이터 증강에 관한 연구가 활발히 진행되고 있다. 이미지 합성기반 데이터 증강 방법은 배경 영상에 객체를 합성할 때 객체와 배경 영상이 접한 영역에서 아티팩트(Artifact)가 발생하며, 이는 객체 검출 모델이 아티팩트를 객체의 특징으로 모델링하여 검출 성능이 저하되는 원인이 된다. 이러한 문제를 해결하기 위하여 본 논문에서는 양방향 필터 기반의 이미지 합성 방법을 제안하고, 단일 단계 검출의 대표적인 방법인 RetinaNet을 이용하여 이미지 합성기반 데이터 증강 방법의 성능을 분석하였다. 공개 데이터셋에 대한 실험 결과 본 논문에서 사용한 단일 검출 방법 및 데이터 증강 기법을 사용하면 더 적은 양의 증강 데이터로 기존 방법과 동일한 성능을 보여주는 것을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.19-21
/
2022
Anomaly detection using self-supervised learning typically generates synthetic data to learn to classify normal and abnormal, and uses real abnormal data as test data to measure anomaly detection performance. In a study using this method to generate synthetic data similar to normal data, anomaly detection was carried out by generating synthetic data by cutting and pasting a specific patch from the original image. In this way, the degree of similarity to normal data depends on the number and size of patches, which affects anomaly detection performance. In this paper, synthetic data were generated by varying patch sizes and numbers, and then similarity and analysis with normal data were conducted using a pre-trained model, and anomaly detection performance was measured by learning the model.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.4
/
pp.195-201
/
2022
For a efficient distance education environment, the need for correct problem recommendation guides considering the learner's exact learning pattern is increasing. In this paper, we study block chain based smart contract technology to suggest a method for presenting the optimal problem recommendation path for individual learners based on the data given by situational weights to the problem patterns of learners collected in the distance education environment. For the performance evaluation of this study, the learning satisfaction with the existing similar learning environment, the usefulness of the problem recommendation guide, and the learner data processing speed were analyzed. Through this study, it was confirmed that the learning satisfaction improved by more than 15% and the learning data processing speed was improved by more than 20% compared to the existing learning environment.
머신러닝을 위주로 하는 인공지능 기술이 여러 분야에서 다양하게 적용되고 있다. 머신러닝 기술은 시험 데이터에 대해 높은 성능을 보였지만, 악의적으로 만들어진 데이터에 대해서는 오동작을 하는 경우가 보고되고 있다. 그 외에도 학습데이터 오염시키기, 학습된 모델 탈취 등 새로운 공격 유형이 보고되고 있다. 기계학습에 사용된 훈련데이터에 대한 보안과 프라이버시 또한 중요한 이슈이다. 인공지능 기술의 개발 및 적용에 있어 이러한 위험성에 대한 고려와 대비가 반드시 필요하다.
Kim, Man-Sun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Cheah, Wooi Ping
The KIPS Transactions:PartB
/
v.14B
no.4
/
pp.287-294
/
2007
Many classification algorithms for real world data suffer from a data class imbalance problem. To solve this problem, various methods have been proposed such as altering the training balance and designing better sampling strategies. The previous methods are not satisfy in the distribution of the input data and the constraint. In this paper, we propose a focused sampling method which is more superior than previous methods. To solve the problem, we must select some useful data set from all training sets. To get useful data set, the proposed method devide the region according to scores which are computed based on the distribution of SOM over the input data. The scores are sorted in ascending order. They represent the distribution or the input data, which may in turn represent the characteristics or the whole data. A new training dataset is obtained by eliminating unuseful data which are located in the region between an upper bound and a lower bound. The proposed method gives a better or at least similar performance compare to classification accuracy of previous approaches. Besides, it also gives several benefits : ratio reduction of class imbalance; size reduction of training sets; prevention of over-fitting. The proposed method has been tested with kNN classifier. An experimental result in ecoli data set shows that this method achieves the precision up to 2.27 times than the other methods.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.1
/
pp.69-74
/
2005
In this paper, we suggested user assistant soft computing method for 3D effect optimization. In order to maximize 3D effect of image, intervals among cameras have to be set up properly according to distance between cameras and an object. Two data such as interval and distance was obtained to use in neural network as the data for learning. However, if the data for learning was obtained by only human's subjective views, it could be that the obtained data was not optimal for learning because the data had an accidental ewer To obtain optimal data lot learning, we added candidature data to obtained data through data analysis, and then selected the most proper data between the candidature data and the obtained data for learning in neural network. Usually, 3D effect of image was affected by both distance from an object to cameras and an object size. Therefore, we suggested fuzzy inference model which was able to represent two factors like distance and size. Candidature data was added by fuzzy model. In the simulation result, we verified that the mote the obtained data was affected by human's subjective views, the more effective the suggested system was.
Class imbalance is one of the significant challenges in deep learning tasks, particularly pronounced in areas with limited data. This study proposes a new approach that utilizes minimal labeled data for effectively classifying tomato leaf diseases. We introduced a recursive learning method using the YOLOv8 model. By utilizing the detection predictions of images on the training data as additional training data, the number of labeled data is progressively increased. Unlike conventional data augmentation and up-down sampling techniques, this method seeks to fundamentally solve the class imbalance problem by maximizing the utility of actual data. Based on the secured labeled data, tomato leaves were extracted, and diseases were classified using the EfficientNet model. This process achieved a high accuracy of 98.92%. Notably, a 12.9% improvement compared to the baseline was observed in the detection of Late blight diseases, which has the least amount of data. This research presents a methodology that addresses data imbalance issues while offering high-precision disease classification, with the expectation of application to other crops.
대화 시스템(dialogue system)은 텍스트나 음성을 통해 다양한 분야에서 특정한 목적을 수행할 수 있는 시스템이다. 대화 시스템을 구현하기 위한 방법으로 인공 신경망(neural network)을 기반으로한 end-to-end learning 방식이 제안되었다. End-to-end learning 방식을 이용한 식당 예약 시스템 모델의 학습을 위해 페이스북은 영어로 이루어진 식당 예약에 관련된 학습 대화 데이터셋(The 6 dialog bAbI tasks)을 구축하였다. 하지만 end-to-end learning 방식의 학습은 많은 학습 데이터가 필요하다는 단점이 존재하는데, 액션 템플릿(action template)의 정의를 통해 도메인 지식을 표현함으로써 일반적인 end-to-end learning 방식보다 적은 학습량으로 좋은 성능의 모델을 학습할 수 있는 Hybrid Code Network 구조를 제안한 연구가 있다. 본 논문에서는 Hybrid Code Network 구조를 이용하여 한국어 식당 예약 시스템을 구축할 수 있는 방법을 제안하고, 한국어로 이루어진 식당 예약에 관련한 학습 대화 데이터를 구축하는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.