• Title/Summary/Keyword: 학습 데이터

Search Result 6,453, Processing Time 0.035 seconds

Implementation of a data collection system for big data analysis and learning based on infant body temperature data (영유아 체온 데이터 기반 빅데이터 분석 및 학습을 위한 데이터 수집 시스템 구현)

  • Lee, Hyoun-Sup;Heo, Gyeongyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.577-578
    • /
    • 2021
  • Recently, artificial intelligence systems are being used in various fields. The accuracy of the decision algorithm of artificial intelligence is greatly affected by the amount of learning and the accuracy of the learning data. In the case of the amount of learning, a large amount of data is required because it has a decisive effect on the performance of AI. In this paper, we propose a data collection system for constructing a system that analyzes future conditions and changes in infants' conditions based on the body temperature data of infants and toddlers. The proposed system is a system that collects and transmits data, and it is believed that it can minimize the resource consumption of the server system in existing big data analysis and training data construction.

  • PDF

A study on hyperparameter management methods for efficient management of learning data in blockchain-based learning systems (블록체인 기반 학습시스템에서, 학습데이터의 효율적 관리를 위한 하이퍼파라미터 관리방법 연구)

  • Youn-A Min;Baek Yeong Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.671-672
    • /
    • 2023
  • 블록체인 기술을 통한 정확하고 투명한 데이터관리의 장점을 학습 시스템에 적용하는 사례가 증가하고 있으며 이에 따라 학습자 만족도와 참여율을 높이기 위한 학습데이터의 효율적 관리가 필요하다. 원격학습에서 학습 연계성과 만족도는 학습자의 학습참여율과 학습에서의 만족도에 변할 수 있음을 감안하여 당 변수에서 기인하는 하이퍼파라미터를 조정하여 학습자의 학습패턴과 학습연속성을 높이기 위한 노력을 하였다. 본 논문에서 제안하는 알고리즘을 적용하여 학습자 만족도를 조사한 결과, 적용 전 대비 10% 이상 학습 만족도 및 학습연계 의향률이 높아짐을 확인할 수 있다.

  • PDF

Adaptation Methods for a Probabilistic Fuzzy Rule-based Learning System (확률적 퍼지 룰 기반 학습 시스템의 적응 방법)

  • Lee, Hyeong-Uk;Byeon, Jeung-Nam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.223-226
    • /
    • 2007
  • 지식 발견 (knowledge discovery)의 관점에서, 단기간 동안 취득된 데이터 패턴을 학습하고자 하는 경우 데이터에 비일관적인(inconsistent) 패턴이 포함되어 있다면 확률적 퍼지 룰(probabilistic fuzzy rule) 기반의 지식 표현 방법 및 적절한 학습 알고리즘을 이용하여 효과적으로 다룰 수 있다. 하지만 장기간 동안 지속적으로 얻어진 데이터 패턴을 다루고자 하는 경우, 데이터가 시변(time-varying) 특성을 가지고 있으면 기존에 추출된 지식을 변화된 데이터에 활용하기 어렵게 된다. 때문에 이러한 데이터를 다루는 학습 시스템에는 패턴의 변화에 맞추어 갈 수 있는 지속적인 적응력(adaptivity)이 요구된다. 본 논문에서는 이러한 적응성의 측면을 고려하여 평생 학습(life-long learning)의 관점 에 서 확률적 퍼지 룰 기반의 학습 시스템에 적용될 수 있는 두 가지 형태의 적응 방법에 대해서 설명하도록 한다.

  • PDF

Learning performance of by the momentum and the bias learning method (모멘트와 바이어스 학습법에 의한 학습 성능)

  • Kim, Eun-Mi;Lee, Bae-Ho
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.431-434
    • /
    • 2005
  • 근원데이터나, 이원데이터를 이용한 문제를 해결하기 위해서는 많은 경우에 완전 해를 갖는 문제로 변형시키기 위해 정규화할 필요성이 있다. 본 논문에서는 이러한 정규화 인수를 찾는 문제를 기존의 GCV, L-Curve, 그리고 이원데이터를 RBF 신경회로망에 적용시킨 커널 학습법에 대한 각각의 성능을 비교실험을 통해 고찰한다. 이때 커널을 이용한 학습법의 성능을 향상하기 위해, 전체학습과 성능의 제한적 비례관계라는 설정아래, 각각의 학습에 따라 능동적으로 변화하는 동적모멘텀의 도입을 제안한다. 끝으로 제안된 동적모멘텀이 분류문제의 표준인 Iris 데이터, Singular 시스템의 대표적 모델인 가우시안 데이터, 그리고 마지막으로 1차원 이미지 복구문제인 Shaw데이터를 이용한 각각의 실험에서 분류문제와 회계문제 양쪽 모두에 있어 기존의 GCV, L-Curve와 동등하거나 우수한 성능이 있음을 보인다.

  • PDF

Malware Classification Schemes Based on CNN Using Images and Metadata (이미지와 메타데이터를 활용한 CNN 기반의 악성코드 패밀리 분류 기법)

  • Lee, Song Yi;Moon, Bongkyo;Kim, Juntae
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.212-215
    • /
    • 2021
  • 본 논문에서는 딥러닝의 CNN(Convolution Neural Network) 학습을 통하여 악성코드를 실행시키지 않고서 악성코드 변종을 패밀리 그룹으로 분류하는 방법을 연구한다. 먼저 데이터 전처리를 통해 3가지의 서로 다른 방법으로 악성코드 이미지와 메타데이터를 생성하고 이를 CNN으로 학습시킨다. 첫째, 악성코드의 byte 파일을 8비트 gray-scale 이미지로 시각화하는 방법이다. 둘째, 악성코드 asm 파일의 opcode sequence 정보를 추출하고 이를 이미지로 변환하는 방법이다. 셋째, 악성코드 이미지와 메타데이터를 결합하여 분류에 적용하는 방법이다. 이미지 특징 추출을 위해서는 본고에서 제안한 CNN을 통한 학습 방식과 더불어 3개의 Pre-trained된 CNN 모델을 (InceptionV3, Densnet, Resnet-50) 사용하여 전이학습을 진행한다. 전이학습 시에는 마지막 분류 레이어층에서 본 논문에서 선택한 데이터셋에 대해서만 학습하도록 파인튜닝하였다. 결과적으로 가공된 악성코드 데이터를 적용하여 9개의 악성코드 패밀리로 분류하고 예측 정확도를 측정해 비교 분석한다.

Integration of neural network models trained in different environments (다른 환경에서 학습된 신경망 모델의 통합)

  • Lee, Yun-Ho;Lee, Su-Hang;Ju, Hye-Jin;Lee, Jong-lack;Weon, Ill-Young
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.796-799
    • /
    • 2020
  • 신경망은 주로 전체 데이터를 중앙에서 학습시키거나 상황에 따라 데이터나 모델을 나누어 분산학습 방법으로 처리해 왔다. 그러나 데이터의 양의 증가와 보안적 이유로 인해 모든 환경에서 기존의 방법을 쓰기에 어려움이 있다. 본 연구에서는 제한된 데이터만으로 모든 데이터로 학습한 것과 같은 학습 효과를 내기 위한 방법을 제안한다. 데이터의 구성이 다른 두 가지 환경인 V-환경과 H-환경에서 학습한 모델을 어떤 방법으로 통합해야 기존의 성능과 비슷한 성능을 낼 수 있는지 연구한다. 우리는 가중치를 합치는 방법을 avg, max, absmas 3가지 방법으로 실험하였으며, 실험 결과로 V-환경에서는 기존의 성능과 비슷한 성능을 보였으며, H-환경에서는 기존의 성능에는 부족하지만, 의미 있는 성능을 보였다.

Sentiment Classification Model Development Based On EDA-Applied BERT (EDA 기법을 적용한 BERT 기반의 감성 분류 모델 생성)

  • Lee, Jin-Sang;Lim, Heui-Seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.79-80
    • /
    • 2022
  • 본 논문에서는 데이터 증강 기법 중 하나인 EDA를 적용하여 BERT 기반의 감성 분류 언어 모델을 만들고, 성능 개선 방법을 제안한다. EDA(Easy Data Augmentation) 기법은 테이터가 한정되어 있는 환경에서 SR(Synonym Replacement), RI(Random Insertion), RS(Random Swap), RD(Random Deletion) 총 4가지 세부 기법을 통해서 학습 데이터를 증강 시킬 수 있다. 이렇게 증강된 데이터를 학습 데이터로 이용해 구글의 BERT를 기본 모델로 한 전이학습을 진행하게 되면 감성 분류 모델을 생성해 낼 수 있다. 데이터 증강 기법 적용 후 전이 학습을 통해 생성한 감성 분류 모델의 성능을 증강 이전의 전이 학습 모델과 비교해 보면 정확도 측면에서 향상을 기대해 볼 수 있다.

  • PDF

Semi-Automatic Learning Model for Health Data Ontology (건강데이터 온톨로지를 위한 반자동 학습 모델)

  • Kim, Kwnag-Seong;Hwang, Doo-Sung
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.388-392
    • /
    • 2009
  • 웹 관련 기술의 발전과 더불어 정보시스템의 개발에서 기계가 자동 처리할 수 있는 데이터의 기술 방법으로 온톨로지의 사용이 보편화되고 있다. 온톨로지는 특정 영역의 개념과 그들간의 관계를 단순 명료하게 기술한다. 지식 발견을 위한 도메인 온톨로지 구축은 도메인의 이해, 데이터의 이해, 테스크의 이해, 온톨로지 학습, 온톨로지 평가, 정제 등 다단계를 통해 완성되나 전문성이 요구된다. 본 논문에서는 학습 기반 도메인 온톨로지 구축방법을 제안하고 건강데이터를 위한 온톨로지 구축에서 응용하였다. 제안된 학습 기반 온톨로지 구축 방법은 건강데이터의 세부 영역별 개념과 관계를 밝히는데 유용하였다.

  • PDF

High-Efficiency Homomorphic Encryption Techniques for Privacy-Preserving Data Learning (프라이버시 보존 데이터 학습을 위한 고효율 동형 암호 기법)

  • Hye Yeon Shim;Yu-Ran Jeon;Il-Gu Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.419-422
    • /
    • 2024
  • 최근 인공지능 기술의 발전과 함께 기계학습과 빅데이터를 융합한 서비스가 증가하게 되었고, 무분별한 데이터 수집과 학습으로 인한 개인정보 유출 위험도가 커졌다. 따라서 프라이버시를 보호하면서 기계학습을 수행할 수 있는 기술이 중요해졌다. 동형암호 기술은 정보 주체자의 개인정보 기밀성을 유지하면서 기계학습을 할 수 있는 방법 중 하나이다. 그러나 평문 크기에 비례하여 암호문 크기와 연산 결과의 노이즈가 커지는 동형암호의 특징으로 인해 기계학습 모델의 예측 정확도가 감소하고 학습 시간이 오래 소요되는 문제가 발생한다. 본 논문에서는 부분 동형암호화된 데이터셋으로 로지스틱 회귀 모델을 학습할 수 있는 기법을 제안한다. 실험 결과에 따르면 제안하는 기법이 종래 기법보다 예측 정확도를 59.4% 향상시킬 수 있었고, 학습 소요 시간을 63.6% 개선할 수 있었다.

A Study on Adaptive Learning Model for Performance Improvement of Stream Analytics (실시간 데이터 분석의 성능개선을 위한 적응형 학습 모델 연구)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.201-206
    • /
    • 2018
  • Recently, as technologies for realizing artificial intelligence have become more common, machine learning is widely used. Machine learning provides insight into collecting large amounts of data, batch processing, and taking final action, but the effects of the work are not immediately integrated into the learning process. In this paper proposed an adaptive learning model to improve the performance of real-time stream analysis as a big business issue. Adaptive learning generates the ensemble by adapting to the complexity of the data set, and the algorithm uses the data needed to determine the optimal data point to sample. In an experiment for six standard data sets, the adaptive learning model outperformed the simple machine learning model for classification at the learning time and accuracy. In particular, the support vector machine showed excellent performance at the end of all ensembles. Adaptive learning is expected to be applicable to a wide range of problems that need to be adaptively updated in the inference of changes in various parameters over time.