• Title/Summary/Keyword: 학습 데이터베이스

Search Result 610, Processing Time 0.022 seconds

SME Bakery's Marketing Strategies Based on Apriori Algorithm (Apriori 알고리즘 기반의 중소 베이커리 기업의 대응 전략)

  • Kim, Do Hoon;Lee, Hyeon June;Lee, Bong Gyou
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.328-337
    • /
    • 2022
  • The importance of online marketing is emerging due to the prevalence of COVID-19. In order to respond to the changing business environment, we have collected ten years of sales data of SME bakery company that have experienced a decrease in sales due to the COVID-19. As a result of the analysis, we found that switching from offline markets to omnichannel B2B and B2C markets and taking 'small quantity batch production' to 'mass production in a small variety can improve management. This study presented online and offline marketing strategies through data analysis of small and medium-sized bakery companies, which have relatively insufficient digital capabilities compared to large companies, and could be a guideline for many SMEs.

Exploitation of Dual-polarimetric Index of Sentinel-1 SAR Data in Vessel Detection Utilizing Machine Learning (이중 편파 Sentinel-1 SAR 영상의 편파 지표를 활용한 인공지능 기반 선박 탐지)

  • Song, Juyoung;Kim, Duk-jin;Kim, Junwoo;Li, Chenglei
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.737-746
    • /
    • 2022
  • Utilizing weather independent SAR images along with machine learning based object detector is effective in robust vessel monitoring. While conventional SAR images often applied amplitude data from Single Look Complex, exploitation of polarimetric parameters acquired from multiple polarimetric SAR images was yet to be implemented to vessel detection utilizing machine learning. Hence, this study used four polarimetric parameters (H, p1, DoP, DPRVI) retrieved from eigen-decomposition and two backscattering coefficients (γ0, VV, γ0, VH) from radiometric calibration; six bands in total were respectively exploited from 52 Sentinel-1 SAR images, accompanied by vessel training data extracted from AIS information which corresponds to acquisition time span of the SAR image. Evaluating different cases of combination, the use of polarimetric indexes along with amplitude values derived enhanced vessel detection performances than that of utilizing amplitude values exclusively.

Anomaly Detection using Geometric Transformation of Normal Sample Images (정상 샘플 이미지의 기하학적 변환을 사용한 이상 징후 검출)

  • Kwon, Yong-Wan;Kang, Dong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.157-163
    • /
    • 2022
  • Recently, with the development of automation in the industrial field, research on anomaly detection is being actively conducted. An application for anomaly detection used in factory automation is camera-based defect inspection. Vision camera inspection shows high performance and efficiency in factory automation, but it is difficult to overcome the instability of lighting and environmental conditions. Although camera inspection using deep learning can solve the problem of vision camera inspection with much higher performance, it is difficult to apply to actual industrial fields because it requires a huge amount of normal and abnormal data for learning. Therefore, in this study, we propose a network that overcomes the problem of collecting abnormal data with 72 geometric transformation deep learning methods using only normal data and adds an outlier exposure method for performance improvement. By applying and verifying this to the MVTec data set, which is a database for auto-mobile parts data and outlier detection, it is shown that it can be applied in actual industrial sites.

Cancellation Scheme of impusive Noise based on Deep Learning in Power Line Communication System (딥러닝 기반 전력선 통신 시스템의 임펄시브 잡음 제거 기법)

  • Seo, Sung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.29-33
    • /
    • 2022
  • In this paper, we propose the deep learning based pre interference cancellation scheme algorithm for power line communication (PLC) systems in smart grid. The proposed scheme estimates the channel noise information by applying a deep learning model at the transmitter. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the power line communication performance is effectively removed through interference cancellation technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the theoretical model based on additive white Gaussian noise. As a result, the proposed interference cancellation with deep learning improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC for smart grid and general communication systems.

In Silico Approach for Predicting Neurotoxicity (In silico 기법을 이용한 신경독성 예측)

  • Lee, So-yeon;Yoo, Sun-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.270-272
    • /
    • 2022
  • Safety is one of the factors that prevent clinical drugs from being distributed on the market. In the case of neurotoxicity, which is the main cause of safety problems caused by drug side effects, risk assessment of drugs and compounds is required in advance. Currently, experiments for testing drug safety are based on animal experimetns, which have the disadvantage of being time-consuming and expensive. Therefore in order to solve the above problem, a neurotoxic prediction model through an in silico experiment was suggested. In this study, the category of neurotoxicity was expanded using a unified medical language system and various related compound data were obtained based on an integrated database. The SMILES (Simplified Molecular Input Line Entry System) of the obtained compounds were converted into fingerprints and it is used as input of machine learning. The model finally predicts the presence or absence of neurotoxicity. The experiment proposed in this study can reduce the time and cost required for the in vivo experiment. Furthermore, it is expected to shorten the research period for new drug development and reduce the burden of suspension of development.

  • PDF

A Study on Digital Reference Services in an Educational Research Library: Focusing on Types of Questions Among Subareas of Education (교육학분야 전문도서관에서 제공되는 디지털참고정보서비스에 관한 연구 - 하위주제영역별 이용자의 질문유형을 중심으로 -)

  • Lee, Myeong-Hee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.20 no.4
    • /
    • pp.51-65
    • /
    • 2009
  • This study attempted to investigate users' information needs in an educational research library, which delivers web-based digital reference services to library users, by analyzing reference questions asked by remote users. A total of 242 questions from two electronic bulletin boards was examined in terms of 6 types of questions asked and 23 subareas of education. The study found that 56.1% of reference questions on the library bulletin board were pure reference questions in curriculum, textbooks and teaching & instruction. Suggestions for effective use of digital reference services were made: easy access to menu services, use of web forms, development of digital reference systems providing search functions and response functions.

Motion Response Estimation of Fishing Boats Using Deep Neural Networks (심층신경망을 이용한 어선의 운동응답 추정)

  • TaeWon Park;Dong-Woo Park;JangHoon Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.958-963
    • /
    • 2023
  • Lately, there has been increasing research on the prediction of motion performance using artificial intelligence for the safe design and operation of ships. However, compared to conventional ships, research on small fishing boats is insufficient. In this paper, we propose a model that estimates the motion response essential for calculating the motion performance of small fishing boats using a deep neural network. Hydrodynamic analysis was conducted on 15 small fishing boats, and a database was established. Environmental conditions and main particulars were applied as input data, and the response amplitude operators were utilized as the output data. The motion response predicted by the trained deep neural network model showed similar trends to the hydrodynamic analysis results. The results showed that the high-frequency motion responses were predicted well with a low error. Based on this study, we plan to extend existing research by incorporating the hull shape characteristics of fishing boats into a deep neural network model.

Performance Assessment of Machine Learning and Deep Learning in Regional Name Identification and Classification in Scientific Documents (머신러닝을 이용한 과학기술 문헌에서의 지역명 식별과 분류방법에 대한 성능 평가)

  • Jung-Woo Lee;Oh-Jin Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.389-396
    • /
    • 2024
  • Generative AI has recently been utilized across all fields, achieving expert-level advancements in deep data analysis. However, identifying regional names in scientific literature remains a challenge due to insufficient training data and limited AI application. This study developed a standardized dataset for effectively classifying regional names using address data from Korean institution-affiliated authors listed in the Web of Science. It tested and evaluated the applicability of machine learning and deep learning models in real-world problems. The BERT model showed superior performance, with a precision of 98.41%, recall of 98.2%, and F1 score of 98.31% for metropolitan areas, and a precision of 91.79%, recall of 88.32%, and F1 score of 89.54% for city classifications. These findings offer a valuable data foundation for future research on regional R&D status, researcher mobility, collaboration status, and so on.

Research Trends and Tasks in the field of Reading Program in Korea (국내 독서 프로그램 분야의 연구 동향과 과제)

  • Pan Jun Kim
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.2
    • /
    • pp.47-69
    • /
    • 2024
  • Despite many changes occurring in the objects and methods of reading, the importance of reading as the most effective means of developing human intellectual ability is consistently emphasized. However, in Korea, reading tends to be perceived as a part of tedious and rigid education or learning activities rather than an act of giving pleasure and joy while accompanied by fun and interest. In addition, compared to the high interest and emphasis on reading, discussions on reading programs to systematically implement them are relatively insufficient, and it is difficult to find a study in Korea that grasp the overall research trend in the field of reading programs. Accordingly, in order to generally examine research trends in the field of domestic reading programs, an intellectual structure analysis method based on keyword profiling was applied. In particular, basic analysis, keyword analysis, research area analysis, and analysis by period and year were performed in stages based on the keywords of theses and academic journal articles in the domestic reading program field retrieved from the RISS database. In addition, future research tasks were presented by comprehensively reviewing the research trends of domestic reading programs identified as a result of this intellectual structure analysis.

Complex nested U-Net-based speech enhancement model using a dual-branch decoder (이중 분기 디코더를 사용하는 복소 중첩 U-Net 기반 음성 향상 모델)

  • Seorim Hwang;Sung Wook Park;Youngcheol Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.253-259
    • /
    • 2024
  • This paper proposes a new speech enhancement model based on a complex nested U-Net with a dual-branch decoder. The proposed model consists of a complex nested U-Net to simultaneously estimate the magnitude and phase components of the speech signal, and the decoder has a dual-branch decoder structure that performs spectral mapping and time-frequency masking in each branch. At this time, compared to the single-branch decoder structure, the dual-branch decoder structure allows noise to be effectively removed while minimizing the loss of speech information. The experiment was conducted on the VoiceBank + DEMAND database, commonly used for speech enhancement model training, and was evaluated through various objective evaluation metrics. As a result of the experiment, the complex nested U-Net-based speech enhancement model using a dual-branch decoder increased the Perceptual Evaluation of Speech Quality (PESQ) score by about 0.13 compared to the baseline, and showed a higher objective evaluation score than recently proposed speech enhancement models.