In Silico Approach for Predicting Neurotoxicity

In silico 기법을 이용한 신경독성 예측

  • Published : 2022.05.26

Abstract

Safety is one of the factors that prevent clinical drugs from being distributed on the market. In the case of neurotoxicity, which is the main cause of safety problems caused by drug side effects, risk assessment of drugs and compounds is required in advance. Currently, experiments for testing drug safety are based on animal experimetns, which have the disadvantage of being time-consuming and expensive. Therefore in order to solve the above problem, a neurotoxic prediction model through an in silico experiment was suggested. In this study, the category of neurotoxicity was expanded using a unified medical language system and various related compound data were obtained based on an integrated database. The SMILES (Simplified Molecular Input Line Entry System) of the obtained compounds were converted into fingerprints and it is used as input of machine learning. The model finally predicts the presence or absence of neurotoxicity. The experiment proposed in this study can reduce the time and cost required for the in vivo experiment. Furthermore, it is expected to shorten the research period for new drug development and reduce the burden of suspension of development.

임상을 거친 약물이 시중에 유통되지 못하는 요인 중 하나는 안전성이다. 약물 부작용으로 인해 발생하는 안전성 문제의 주된 원인인 신경독성의 경우, 사전에 약물이나 화합물에 대한 위험 평가가 필요하다. 현재 약물의 안전성 검사를 위한 실험들은 동물 실험을 기반으로 하고 있으며, 이는 시간과 비용이 많이 든다는 단점을 갖는다. 따라서 위 문제를 해결하기 위해 in silico 실험을 통한 신경독성 예측모델을 제안하고자 한다. 본 연구에서는 의학 언어 시스템 (Unified Medical Language System)을 이용해 신경독성의 범주를 확대하고, 통합 데이터베이스를 기반으로 다양한 관련 화합물 데이터를 얻었다. 얻은 화합물들의 SMILES (Simplified Molecular Input Line Entry System)를 fingerprint로 변환시키고 이를 사용한 기계학습 기반의 모델을 만들었다. 모델은 최종적으로 신경독성의 유무를 예측한다. 해당 연구에서 제안된 실험은 in vivo 실험에 소요되는 시간 및 비용을 줄일 수 있다. 더 나아가 신약 개발 연구 기간을 단축하고 개발 중지 등의 부담을 줄일 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 2022년도 식품의약품안전처의 연구개발비(21162MFDS045)로 수행되었으며 이에 감사드립니다.