• Title/Summary/Keyword: 학습 경로

Search Result 1,009, Processing Time 0.029 seconds

Design and Implementation of Multi-dimensional Learning Path Pattern Analysis System (다차원 학습경로 패턴 분석 시스템의 설계 및 구현)

  • Baek, Jang-Hyeon;Kim, Yung-Sik
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.461-470
    • /
    • 2005
  • In leaner-controlled environment where learners can decide and restructure the contents, methods and order of learning by themselves, it is possible to apply individualized learning in consideration of each learner's characteristics. The present study analyzed learners' learning path pattern, which is one of learners' characteristics important in Web-based teaching-learning process, using the Apriori algorithm and grouped learners according to their learning path pattern. Based on the result, we designed and implemented a multi-dimensional learning path pattern analysis system to provide individual learners with teaming paths, learning contents, learning media, supplementary teaming contents, the pattern of material presentation, etc. multi-dimensionally. According to the result of surveying satisfaction with the developed system satisfaction with supplementary learning contents was highest (Highly satisfied '$24.5\%$, Satisfied'$35.7\%$). By learners' level, satisfaction was higher in low-level learners (Highly satisfied'$20.2\%$, Satisfied'$31.2\%$) than in high-level learners (Highly satisfied'$18.4\%$, 'Satisfied'$28.54\%$). The developed system is expected to provide learners with multi-dimensionally meaningful information from various angles using OLAP technologies such as drill-up and drill-down.

Online Reinforcement Learning to Search the Shortest Path in Maze Environments (미로 환경에서 최단 경로 탐색을 위한 실시간 강화 학습)

  • Kim, Byeong-Cheon;Kim, Sam-Geun;Yun, Byeong-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.155-162
    • /
    • 2002
  • Reinforcement learning is a learning method that uses trial-and-error to perform Learning by interacting with dynamic environments. It is classified into online reinforcement learning and delayed reinforcement learning. In this paper, we propose an online reinforcement learning system (ONRELS : Outline REinforcement Learning System). ONRELS updates the estimate-value about all the selectable (state, action) pairs before making state-transition at the current state. The ONRELS learns by interacting with the compressed environments through trial-and-error after it compresses the state space of the mage environments. Through experiments, we can see that ONRELS can search the shortest path faster than Q-learning using TD-ewor and $Q(\lambda{)}$-learning using $TD(\lambda{)}$ in the maze environments.

Path selection algorithm for multi-path system based on deep Q learning (Deep Q 학습 기반의 다중경로 시스템 경로 선택 알고리즘)

  • Chung, Byung Chang;Park, Heasook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.50-55
    • /
    • 2021
  • Multi-path system is a system in which utilizes various networks simultaneously. It is expected that multi-path system can enhance communication speed, reliability, security of network. In this paper, we focus on path selection in multi-path system. To select optimal path, we propose deep reinforcement learning algorithm which is rewarded by the round-trip-time (RTT) of each networks. Unlike multi-armed bandit model, deep Q learning is applied to consider rapidly changing situations. Due to the delay of RTT data, we also suggest compensation algorithm of the delayed reward. Moreover, we implement testbed learning server to evaluate the performance of proposed algorithm. The learning server contains distributed database and tensorflow module to efficiently operate deep learning algorithm. By means of simulation, we showed that the proposed algorithm has better performance than lowest RTT about 20%.

Local Path Planning and Obstacle Avoidance System based on Reinforcement Learning (강화학습 기반의 지역 경로 탐색 및 장애물 회피 시스템)

  • Lee, Se-Hoon;Yeom, Dae-Hoon;Kim, Pung-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.59-60
    • /
    • 2019
  • WCS에서 AGV의 스케줄링과 동적, 정적 장애물 인식 및 충돌 회피문제는 오래전부터 다뤄져 온 중요한 문제이다. 본 논문에서는 위의 문제를 해결하기 위해 Lidar 센서를 중심으로 다양한 데이터를 기반으로 한 강화학습 시스템을 제안한다. 제안하는 시스템은 기본의 명시적인 알고리즘에 비해 다양하고 유동적인 환경에서 경로 계획과 동적 정적 장애물을 인식하고 안정적으로 회피하는 것을 확인하였으며 산업 현장에 도입 가능성을 확인하였다. 또한 강화학습의 적용 범위, 적용 방안과 한계에 대해서 시사한다.

  • PDF

Learning Heuristics for Tactical Path-finding in Computer Games (컴퓨터 게임에서 전술적 경로 찾기를 위한 휴리스틱 학습)

  • Yu, Kyeon-Ah
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1333-1341
    • /
    • 2009
  • Tactical path-finding in computer games is path-finding where a path is selected by considering not only basic elements such as the shortest distance or the minimum time spend but also tactical information of surroundings when deciding character's moving trajectory. One way to include tactical information in path-finding is to represent a heuristic function as a sum of tactical quality multiplied by a weighting factor which is.. determined based on the degree of its importance. The choice of weighting factors for tactics is very important because it controls search performance and the characteristic of paths found. In this paper. we propose a method for improving a heuristic function by adjusting weights based on the difference between paths on examples given by a level designer and paths found during the search process based on the CUITent weighting factors. The proposed method includes the search algorithm modified to detect search errors and learn heuristics and the perceptron-like weight updating formular. Through simulations it is demonstrated how different paths found by tactical path-finding are from those by traditional path-finding. We analyze the factors that affect the performance of learning and show the example applied to the real game environments.

  • PDF

Minimizing in Tracking Error Using Neural Network for Free-ranging Automated Guided Vehicle (신경회로망을 이용한 자율주행 반송차의 경로추종오차의 최소화)

  • 정인철;곽윤근;김수현;이두용;김동규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.330-340
    • /
    • 1998
  • 자율주행 반송차가 주어진 경로를 따라 주행 할 때 주행면의 불균일성과 같은 외란요인과 자율반송차 시스템 자체의 비선형성 등으로 인하여 원치 않는 경로추종오차가 발생하게 되는데 본 연구에서는 이러한 경로추종오차를 최소화하기 위해서 신경회로망을 이용한 경로추종 오차 보상방법을 제안한다. 본 방법에서는 신경회로망을 통하여 조향각 보상량을 제공하므로써 경로추종오차를 보상한다. 신경망은 다층 퍼셉트론을 채용하였으며 역전파 알고리즘의 최급강하규칙(Gradient descent rule)을 이용하여 학습을 수행하였다. 본 제안에서는 학습오차를 경로추종오차로부터 정의하므로써 경로추종오차가 최소화되록 신경회로망을 학습시켰다. 제안된 방법의 타당성은 다양한 경로에 대한 모의실험 및 실제 실험을 통하여 검증하였다.

  • PDF

Optimal Path Search using Reinforcement Learning Technique (강화학습 기법을 이용한 최적경로 탐색)

  • Gu, Da-Sol;Lee, Tae-Kyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.886-889
    • /
    • 2014
  • 본 논문에서는 사용자로부터 실시간으로 전송 받은 교통정보 이용하여 강화학습에 의한 최적 경로탐색을 제안한다. ITS(Intelligent Transportation Systems)를 서비스하기 위한 시스템을 구축하기에는 많은 시간적 비용과 물질적 비용이 소모된다. 이를 보완하기 위해 사용자의 단말기로부터 실시간으로 수집한 교통 정보를 이용하여 강화학습기법을 적용한다. 강화학습의 목표는 환경 내에서의 에이전트가 행동에 대한 보상의 총합을 최대화 하는 것이다. 본 논문에서는 실시간으로 사용자의 단말기로부터 획득한 교통 정보를 이용하여 강화학습기법을 적용하고, 최단경로탐색 알고리즘을 분석하여 비교한다.

Design of track path-finding simulation using Unity ML Agents

  • In-Chul Han;Jin-Woong Kim;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.61-66
    • /
    • 2024
  • This paper aims to design a simulation for path-finding of objects in a simulation or game environment using reinforcement learning techniques. The main feature of this study is that the objects in the simulation are trained to avoid obstacles at random locations generated on a given track and to automatically explore path to get items. To implement the simulation, ML Agents provided by Unity Game Engine were used, and a learning policy based on PPO (Proximal Policy Optimization) was established to form a reinforcement learning environment. Through the reinforcement learning-based simulation designed in this study, we were able to confirm that the object moves on the track by avoiding obstacles and exploring path to acquire items as it learns, by analyzing the simulation results and learning result graph.

Relationship of Avoid Fusion and concentration : Focused on mediative effects of emotion control and thinking control (인지융합과 집중력 간의 관계: 정서조절과 사고조절력의 매개효과를 중심으로)

  • Lee, JeongHwa;Son, ChongNak
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.433-440
    • /
    • 2015
  • This study was conducted to examine mediative effects of two factors, emotion control and thinking control, in the relationship between avoid fusion and attention. Participants (308 high school students) were asked to complete a questionnaire which contains items to measure some psychological properties such as emotion control (EC), thinking control (TC), avoidance avoid fusion (CF), conceration(Co) and learning attitude(LA). Structural equation model analysis showed that 8 of modified 9 paths were statistically significant; CF to Co and TC, TC to EC, Co, and LA, EC to Co and LA, and Co to LA. Limitations and suggestions were mentioned in the discussion.

A Study on ICT Literacy Education Goal Attainment of Elementary School Students (초등학생들의 ICT 소양교육목표 달성 정도에 관한 연구)

  • Choi, Yun-Hee;Jun, Woo-Chun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.51-60
    • /
    • 2005
  • 현대 사회에서 정보는 학생들의 생활에 큰 영향을 주고 있으며, 정보화 사회의 주역이 될 학생들에게 정보화 교육은 절실하게 필요하다. 2003년 이후로 초등학교에서 정보통신기술이 전면적으로 실시된 이후 여러 방면에서 활발한 논의가 이루어지고 있지만, 교육 목표에 대한 학생들의 학업 성취 수준을 평가하는 것은 간과되어 왔다. 본 논문에서는 초등학교 2, 4, 6학년 학생들의 정보통신기술교육에 대한 학습 목표 성취도를 살펴보고, 학생들의 학습 경로와 교육목표 성취도 간의 관계를 분석하여 더 나은 ICT 교육의 방향을 제시해 보고자 한다. 먼저, 단계별 학습 영역에 따른 학습 내용을 추출하고 평가 기준을 세운 후 해당 학생들의 학습 정도와 학습 내용의 습득 경로를 평가지를 통하여 조사하였다. 조사 내용을 영역별로 분석한 결과 컴퓨터 교육의 인지적인 부분이 기능적인 부분보다 상대적으로 교육목표 성취도가 낮으며, 학습 경로를 분석한 결과 수업 시간보다는 집에서 가족에게 배우거나 스스로 익히는 경우가 더 많은 것으로 조사되었다.

  • PDF