In leaner-controlled environment where learners can decide and restructure the contents, methods and order of learning by themselves, it is possible to apply individualized learning in consideration of each learner's characteristics. The present study analyzed learners' learning path pattern, which is one of learners' characteristics important in Web-based teaching-learning process, using the Apriori algorithm and grouped learners according to their learning path pattern. Based on the result, we designed and implemented a multi-dimensional learning path pattern analysis system to provide individual learners with teaming paths, learning contents, learning media, supplementary teaming contents, the pattern of material presentation, etc. multi-dimensionally. According to the result of surveying satisfaction with the developed system satisfaction with supplementary learning contents was highest (Highly satisfied '$24.5\%$, Satisfied'$35.7\%$). By learners' level, satisfaction was higher in low-level learners (Highly satisfied'$20.2\%$, Satisfied'$31.2\%$) than in high-level learners (Highly satisfied'$18.4\%$, 'Satisfied'$28.54\%$). The developed system is expected to provide learners with multi-dimensionally meaningful information from various angles using OLAP technologies such as drill-up and drill-down.
Reinforcement learning is a learning method that uses trial-and-error to perform Learning by interacting with dynamic environments. It is classified into online reinforcement learning and delayed reinforcement learning. In this paper, we propose an online reinforcement learning system (ONRELS : Outline REinforcement Learning System). ONRELS updates the estimate-value about all the selectable (state, action) pairs before making state-transition at the current state. The ONRELS learns by interacting with the compressed environments through trial-and-error after it compresses the state space of the mage environments. Through experiments, we can see that ONRELS can search the shortest path faster than Q-learning using TD-ewor and $Q(\lambda{)}$-learning using $TD(\lambda{)}$ in the maze environments.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.1
/
pp.50-55
/
2021
Multi-path system is a system in which utilizes various networks simultaneously. It is expected that multi-path system can enhance communication speed, reliability, security of network. In this paper, we focus on path selection in multi-path system. To select optimal path, we propose deep reinforcement learning algorithm which is rewarded by the round-trip-time (RTT) of each networks. Unlike multi-armed bandit model, deep Q learning is applied to consider rapidly changing situations. Due to the delay of RTT data, we also suggest compensation algorithm of the delayed reward. Moreover, we implement testbed learning server to evaluate the performance of proposed algorithm. The learning server contains distributed database and tensorflow module to efficiently operate deep learning algorithm. By means of simulation, we showed that the proposed algorithm has better performance than lowest RTT about 20%.
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.59-60
/
2019
WCS에서 AGV의 스케줄링과 동적, 정적 장애물 인식 및 충돌 회피문제는 오래전부터 다뤄져 온 중요한 문제이다. 본 논문에서는 위의 문제를 해결하기 위해 Lidar 센서를 중심으로 다양한 데이터를 기반으로 한 강화학습 시스템을 제안한다. 제안하는 시스템은 기본의 명시적인 알고리즘에 비해 다양하고 유동적인 환경에서 경로 계획과 동적 정적 장애물을 인식하고 안정적으로 회피하는 것을 확인하였으며 산업 현장에 도입 가능성을 확인하였다. 또한 강화학습의 적용 범위, 적용 방안과 한계에 대해서 시사한다.
Tactical path-finding in computer games is path-finding where a path is selected by considering not only basic elements such as the shortest distance or the minimum time spend but also tactical information of surroundings when deciding character's moving trajectory. One way to include tactical information in path-finding is to represent a heuristic function as a sum of tactical quality multiplied by a weighting factor which is.. determined based on the degree of its importance. The choice of weighting factors for tactics is very important because it controls search performance and the characteristic of paths found. In this paper. we propose a method for improving a heuristic function by adjusting weights based on the difference between paths on examples given by a level designer and paths found during the search process based on the CUITent weighting factors. The proposed method includes the search algorithm modified to detect search errors and learn heuristics and the perceptron-like weight updating formular. Through simulations it is demonstrated how different paths found by tactical path-finding are from those by traditional path-finding. We analyze the factors that affect the performance of learning and show the example applied to the real game environments.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.330-340
/
1998
자율주행 반송차가 주어진 경로를 따라 주행 할 때 주행면의 불균일성과 같은 외란요인과 자율반송차 시스템 자체의 비선형성 등으로 인하여 원치 않는 경로추종오차가 발생하게 되는데 본 연구에서는 이러한 경로추종오차를 최소화하기 위해서 신경회로망을 이용한 경로추종 오차 보상방법을 제안한다. 본 방법에서는 신경회로망을 통하여 조향각 보상량을 제공하므로써 경로추종오차를 보상한다. 신경망은 다층 퍼셉트론을 채용하였으며 역전파 알고리즘의 최급강하규칙(Gradient descent rule)을 이용하여 학습을 수행하였다. 본 제안에서는 학습오차를 경로추종오차로부터 정의하므로써 경로추종오차가 최소화되록 신경회로망을 학습시켰다. 제안된 방법의 타당성은 다양한 경로에 대한 모의실험 및 실제 실험을 통하여 검증하였다.
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.886-889
/
2014
본 논문에서는 사용자로부터 실시간으로 전송 받은 교통정보 이용하여 강화학습에 의한 최적 경로탐색을 제안한다. ITS(Intelligent Transportation Systems)를 서비스하기 위한 시스템을 구축하기에는 많은 시간적 비용과 물질적 비용이 소모된다. 이를 보완하기 위해 사용자의 단말기로부터 실시간으로 수집한 교통 정보를 이용하여 강화학습기법을 적용한다. 강화학습의 목표는 환경 내에서의 에이전트가 행동에 대한 보상의 총합을 최대화 하는 것이다. 본 논문에서는 실시간으로 사용자의 단말기로부터 획득한 교통 정보를 이용하여 강화학습기법을 적용하고, 최단경로탐색 알고리즘을 분석하여 비교한다.
Journal of the Korea Society of Computer and Information
/
v.29
no.2
/
pp.61-66
/
2024
This paper aims to design a simulation for path-finding of objects in a simulation or game environment using reinforcement learning techniques. The main feature of this study is that the objects in the simulation are trained to avoid obstacles at random locations generated on a given track and to automatically explore path to get items. To implement the simulation, ML Agents provided by Unity Game Engine were used, and a learning policy based on PPO (Proximal Policy Optimization) was established to form a reinforcement learning environment. Through the reinforcement learning-based simulation designed in this study, we were able to confirm that the object moves on the track by avoiding obstacles and exploring path to acquire items as it learns, by analyzing the simulation results and learning result graph.
This study was conducted to examine mediative effects of two factors, emotion control and thinking control, in the relationship between avoid fusion and attention. Participants (308 high school students) were asked to complete a questionnaire which contains items to measure some psychological properties such as emotion control (EC), thinking control (TC), avoidance avoid fusion (CF), conceration(Co) and learning attitude(LA). Structural equation model analysis showed that 8 of modified 9 paths were statistically significant; CF to Co and TC, TC to EC, Co, and LA, EC to Co and LA, and Co to LA. Limitations and suggestions were mentioned in the discussion.
현대 사회에서 정보는 학생들의 생활에 큰 영향을 주고 있으며, 정보화 사회의 주역이 될 학생들에게 정보화 교육은 절실하게 필요하다. 2003년 이후로 초등학교에서 정보통신기술이 전면적으로 실시된 이후 여러 방면에서 활발한 논의가 이루어지고 있지만, 교육 목표에 대한 학생들의 학업 성취 수준을 평가하는 것은 간과되어 왔다. 본 논문에서는 초등학교 2, 4, 6학년 학생들의 정보통신기술교육에 대한 학습 목표 성취도를 살펴보고, 학생들의 학습 경로와 교육목표 성취도 간의 관계를 분석하여 더 나은 ICT 교육의 방향을 제시해 보고자 한다. 먼저, 단계별 학습 영역에 따른 학습 내용을 추출하고 평가 기준을 세운 후 해당 학생들의 학습 정도와 학습 내용의 습득 경로를 평가지를 통하여 조사하였다. 조사 내용을 영역별로 분석한 결과 컴퓨터 교육의 인지적인 부분이 기능적인 부분보다 상대적으로 교육목표 성취도가 낮으며, 학습 경로를 분석한 결과 수업 시간보다는 집에서 가족에게 배우거나 스스로 익히는 경우가 더 많은 것으로 조사되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.