• Title/Summary/Keyword: 학습 객체

Search Result 769, Processing Time 0.036 seconds

차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류 (Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video)

  • 신욱선;이창훈
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 일반적으로 감시영상에서 움직이는 물체들은 배경빼기 혹은 프레임 차를 이용하여 추출된다. 하지만 객체에 의해서 만들어지는 그림자는 심각한 탐지의 오류를 야기시킬 수 있다. 특히, 도로 상에 설치된 감시카메라로부터 획득된 영상으로부터 차량 정보를 분석할 때, 차량에 의해서 생성되는 그림자로 인하여 차량의 모양을 왜곡시켜 부정확한 결과를 만든다. 때문에 그림자의 제거는 감시 영상 내에서의 정확한 객체 추출을 위해서 반드시 필요하다. 본 논문은 도로감시영상 내에서 움직이는 차량의 차종판별 성능을 향상시키기 위한 움직이는 객체 내에 만들어지는 그림자를 제거한다. 제거된 객체의 영역은 소실점을 이용하여 3차원 객체로 피팅(Fitting)한 후 측정된 데이터를 감독 학습하여 원하는 차종 판별결과를 얻는데 사용한다. 실험은 3가지 기계학습 방법{IBL, C4.5, NN(Neural Network)}을 이용하여 그림자의 제거가 차종의 판별성능에 미치는 결과의 평가한다.

객체 감지기의 효율적 반복 학습 알고리즘 (Intelligent Iterative Learning Algorithm for Object Detector)

  • 이상수;강현호;정홍배;이동훈;양현민;안춘기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.889-891
    • /
    • 2017
  • 본 논문에서는 기계학습으로 설계된 객체 감지기(object detector)가 주어진 환경에서 객체 검출 작업을 할 때 오인식을 줄이는 방법을 시간, 전력 효율 면에서 고려한다. 먼저 감지해야 하는 객체의 정보를 나타내기 알맞은 이미지 feature를 설정한다. 그리고 AdaBoost를 적용하여 감지기를 설계한 후, 감지기가 주어진 환경에 특화되도록 하는 성능 개선 방법을 제시한다.

Yolov5와 opencv를 사용한 차량 교통량 및 속도 측정 (Measurement of vehicle traffic volume and velocity using Yolov5 and opencv)

  • 이민섭;우지영;남윤영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.91-92
    • /
    • 2023
  • 본 논문에서는 Yolov5와 Deepsort를 사용한 Tracking by detection을 구현하여 특정 영역을 통과하는 차량의 수를 집계하고, 각 차량의 추정속도를 계산하는 시스템을 구현한다. 실시간 객체 탐지 기능을 수행하는 Yolov5 모델의 학습에는 Kaggle의 개방 데이터인 '도요타 자동차 이미지'를 사용한다. 이미지 크기 640*640, 배치사이즈 16, Early stopping 플래그를 사용하여 학습했을때, Yolov5의 객체 탐지 성능은 정확도 98%, 정밀도 0.961, mAP 0.72을 보여주었다.

  • PDF

초등학생의 논리적 사고력 향상을 위한 객체지향 프로그래밍 교육 연구 (A Study on Object-Oriented Programming Education for Improving Logical Thinking Ability of Elementary School Students)

  • 박경모;홍태진
    • 디지털콘텐츠학회 논문지
    • /
    • 제10권2호
    • /
    • pp.367-373
    • /
    • 2009
  • 컴퓨터 프로그래밍 교육에서는 추상적 개념을 이해하고 주어진 문제를 스스로 해결하도록 한다. 기존의 프로그래밍 교육에서 BASIC, C와 같은 절차적 프로그래밍 언어에 대한 연구는 많이 있지만 JAVA와 같은 객체지향 프로그래밍 언어를 통한 교육콘텐츠는 찾아보기 힘들다. 본 논문에서는 구조 중립적이며, 분산 인터넷 환경에 적합한 특성을 가지고 있는 객체지향 프로그래밍(OOP)/JAVA 학습 시스템을 개발하여, 초등학교 학생들로 하여금 활용하도록 하였다. OOP/JAVA 학습 시스템을 통한 객체지향 프로그래밍 교육은 초등학생들의 논리적 사고력을 향상시키고, 수학, 과학 과목의 학습 성취도에 긍정적인 영향을 주는 동시에 컴퓨터에 대한 흥미도가 상승함을 실험을 통해 확인할 수 있었다.

  • PDF

재사용을 통한 객체 모델링 지원 기법 (Object Modeling Supporting Technique By Reuse)

  • 김정아
    • 컴퓨터교육학회논문지
    • /
    • 제5권1호
    • /
    • pp.99-108
    • /
    • 2002
  • 윈도우 프로그래밍과 인터넷 프로그래밍의 수요가 증대함에 따라 객체 지향 프로그래밍 언어에 대한 교육과 객체 지향 소프트웨어 개발에 관한 교육의 중요성이 높아가고 있다. 그러나, 새로운 분야의 개발 기법을 익힌다는 것은 쉬운 일이 아니다. 본 논문에서는 소프트웨어 재사용의 개념과 기법을 객체 모델링 교육에 접목하려고 노력하였다. 즉, 객체 모델링 단계에서 이전의 경험을 재사용할 수 있는 환경을 통해 객체 모델 구축 기법을 효과적으로 학습하도록 지원하고자 한다. 이를 위하여 학습과정에서 질의와 라이브러리에 저장된 컴포넌트에 대한 유사,일치성(Aanalogy)을 판단하여 라이브러리의 모델과 패턴을 재사용할 수 있는 방법을 제안하였다. 이로써 이미 잘 정의된 모델의 이해를 통해 교육 과정의 효과를 증대할 수 있을 것으로 기대한다. 또한 유추 기법(Analogy reasoning) 활용하므로써 단순한 키워드에 의한 재사용 라이브러리 검색 보다는 보다 폭넓은 범위의 대상 검색이 가능하도록 지원한다.

  • PDF

객체 중심 증강 기법을 사용한 목조 문화재 영상에서의 변위 감지 모델 (An Displacement Detection Model in Cultural Asset Images using Object-centric Augmentation)

  • 강재용;김인기;임현석;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.137-139
    • /
    • 2021
  • 본 논문에서는 목조 문화재 영상에서의 변위를 효율적으로 감지하기 위한 객체 중심 증강 기법을 사용한 모델을 제안한다. 우선 객체 중심 증강 기법을 적용하여 변위 객체들이 이미지 공간상의 어느 곳이든 위치할 수 있게끔 데이터를 구성한 이후 사전 학습된 합성 곱 신경망을 사용하여 입력 이미지에 대한 심층 특징 벡터를 추출한다. 그 이후 심층 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 객체 중심 증강 기법을 사용한 모델이 객체 중심 증강 기법을 사용하지 않은 모델보다 목조 문화재에서 변위 영역을 더 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

자율주행 대응 기계학습 데이터를 관리하고 분석하는 소프트웨어의 개발 (Development of Data Management and Analysis Software for Autonomous Vehicle Driving Environment)

  • 박종빈;이한덕;김경원;정종진
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.87-88
    • /
    • 2019
  • 최근 기계학습 기술의 급속한 발전에 힘입어 자율주행을 위한 객체 인식 및 처리 기술 역시 비약적으로 발전하고 있다. 그러나 이러한 기계학습의 성능은 모델의 구조와 학습용 데이터의 품질에 영향을 받는다. 특히 주행환경을 잘 표현하는 학습데이터가 중요한데 전혀 새로운 도로, 주행환경, 장애물, 정적 혹은 동적 객체 등을 마주하면 정확도와 안정성에서 부정적인 영향을 받을 수 있는 것이다. 해외의 주행 데이터들에 크게 의존하고 있는 우리나라의 현실에 비춰 볼 때 국내 환경에 맞는 학습데이터를 쉽고 효율적으로 확보/관리/분석할 수 있게 하는 환경의 구축이 시급하다. 따라서 본 논문에서는 자율주행을 위한 기계학습 데이터를 효과적으로 관리하고 분석하기 위한 소프트웨어를 설계하고 개발하였다. 구체적으로는 수집된 영상들을 관리하는 기능, 영상에 존재하는 노이즈 제거 및 화질 개선 처리 기능, 학습 및 검증을 위한 메타 정보 태깅 기능, 태깅 정보의 통계적 분석 기능들을 포함한다. 개발한 소프트웨어는 우리나라에서 자체 촬영한 자율주행 학습 영상들에 대해 딥러닝 모델들을 학습하고 검증하는데 활용할 예정이다.

  • PDF

Visual Sentences for Educational Math Games

  • Chang, Hee-Dong
    • 한국게임학회지
    • /
    • 제8권1호
    • /
    • pp.32-38
    • /
    • 2011
  • 수학적 명제들을 사용하는 수학교육용 게임의 학습 도움말이나 안내말은 그래픽 우선 인지스타일을 가진 게임세대의 학습자를 위해 그래픽적인 형태로 표현하는 것이 필요하다. 본 논문에서는 수학 명제들에 대한 객체 기반 비주얼적 표현방법을 제안하였다. 이 표현방법은 단어들과 함께 그래픽적 기호들과 수학적 기호들 사용하여 객체 기반적인 표현방법의 규칙을 갖고 있다. 그래서 수학적 의미를 정확하게 표현하거나 이해하기가 쉽다. 그리고 학습자가 내용을 빠르게 읽을 수 있다. 제안된 방법은 게임 세대 학습자들에게 교육용 게임을 통해 수학 학습의 스캐폴딩으로써 도움을 받기가 좋다.

  • PDF

수학과 수와 연산 영역의 클래스 구조 설계 (Class Hierarchy of Number and Operations in Mathematics)

  • 김민정;김갑수
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2005년도 하계학술대회
    • /
    • pp.89-97
    • /
    • 2005
  • 초등학교 수학과의 학습은 학습자의 구체적인 조작을 통해서 이루어져야 하나 현재 웹을 통하여 학습할 수 있는 수와 연산 영역의 학습 프로그램은 대부분 단순한 수의 나열이거나 프로그램에서 제공하는 학습 내용을 따라해 보는 수준에 그치고 있다. 구체적인 조작을 할 수 있는 자바 애플릿을 제작하려고 해도 초등학생의 인지 단계 및 교육과정에 적합한 수와 연산 클래스가 체계화되어 있지 않아 클래스의 사용에 어려움이 있다. 이에 본 연구에서는 수와 연산 영역의 교육과정을 분석하여 객체를 정의하고, 객체의 속성과 메소드를 분석하여 클래스를 구성한 후 클래스 사이의 관계를 파악하여 클래스 계층구조를 설계하였다.

  • PDF

딥러닝을 활용한 철도 터널 객체 분할에 학습 데이터가 미치는 영향 (Effect of Learning Data on the Semantic Segmentation of Railroad Tunnel Using Deep Learning)

  • 유영무;김병규;박정준
    • 한국지반공학회논문집
    • /
    • 제37권11호
    • /
    • pp.107-118
    • /
    • 2021
  • Scan-to-BIM은 라이다(Light Detection And Ranging, LiDAR)로 구조물을 계측하고 이를 바탕으로 3D BIM(Building Information Modeling) 모델을 구축하는 방법으로 정밀한 모델링이 가능하지만 많은 인력과 시간, 비용이 소모된다는 한계를 가진다. 이러한 한계를 극복하기 위해 포인트 클라우드 데이터를 대상으로 딥러닝(Deep learning) 알고리즘을 적용하여 구조물의 객체 분할(Semantic segmentation)을 수행하는 연구들이 진행되고 있으나 학습 데이터에 따라 객체 분할 정확도가 어떻게 변화하는지에 대한 연구는 미흡한 실정이다. 본 연구에서는 딥러닝을 통한 철도 터널의 객체 분할에 학습 데이터를 구성하는 철도 터널의 크기, 선로 유형 등이 어떤 영향을 미치는지 확인하기 위해 매개변수 연구를 수행하였다. 매개변수 연구 결과, 학습과 테스트에 사용한 터널의 크기가 비슷할수록, 단선 터널보다는 복선 터널로 학습하는 경우에 더 높은 객체 분할 성능을 보였다. 또한, 학습 데이터를 두 가지 이상의 터널로 구성하면 전체 정확도(Overall Accuracy, OA)와 MIoU(Mean Intersection over Union)가 적게는 10%에서 많게는 50%가량 증가하였는데 이로부터 학습 데이터를 다양하게 구성하는 것이 효율적인 학습에 기여할 수 있음을 확인하였다.