• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.027 seconds

The Latest Trends in Attention Mechanisms and Their Application in Medical Imaging (어텐션 기법 및 의료 영상에의 적용에 관한 최신 동향)

  • Hyungseob Shin;Jeongryong Lee;Taejoon Eo;Yohan Jun;Sewon Kim;Dosik Hwang
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1305-1333
    • /
    • 2020
  • Deep learning has recently achieved remarkable results in the field of medical imaging. However, as a deep learning network becomes deeper to improve its performance, it becomes more difficult to interpret the processes within. This can especially be a critical problem in medical fields where diagnostic decisions are directly related to a patient's survival. In order to solve this, explainable artificial intelligence techniques are being widely studied, and an attention mechanism was developed as part of this approach. In this paper, attention techniques are divided into two types: post hoc attention, which aims to analyze a network that has already been trained, and trainable attention, which further improves network performance. Detailed comparisons of each method, examples of applications in medical imaging, and future perspectives will be covered.

Development of AI Convergence Education Model Based on Machine Learning for Data Literacy (데이터 리터러시를 위한 머신러닝 기반 AI 융합 수업 모형 개발)

  • Sang-Woo Kang;Yoo-Jin Lee;Hyo-Jeong Lim;Won-Keun Choi
    • Advanced Industrial SCIence
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • The purpose of this study is to develop a machine learning-based AI convergence class model and class design principles that can foster data literacy in high school students, and to develop detailed guidelines accordingly. We developed a machine learning-based teaching model, design principles, and detailed guidelines through research on prior literature, and applied them to 15 students at a specialized high school in Seoul. As a result of the study, students' data literacy improved statistically significantly (p<.001), so we confirmed that the model of this study has a positive effect on improving learners' data literacy, and it is expected that it will lead to related research in the future.

Deep learning-based clothing attribute classification using fashion image data (패션 이미지 데이터를 활용한 딥러닝 기반의 의류속성 분류)

  • Hye Seon Jeong;So Young Lee;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.57-64
    • /
    • 2024
  • Attributes such as material, color, and fit in fashion images are important factors for consumers to purchase clothing. However, the process of classifying clothing attributes requires a large amount of manpower and is inconsistent because it relies on the subjective judgment of human operators. To alleviate this problem, there is a need for research that utilizes artificial intelligence to classify clothing attributes in fashion images. Previous studies have mainly focused on classifying clothing attributes for either tops or bottoms, so there is a limitation that the attributes of both tops and bottoms cannot be identified simultaneously in the case of full-body fashion images. In this study, we propose a deep learning model that can distinguish between tops and bottoms in fashion images and classify the category of each item and the attributes of the clothing material. The deep learning models ResNet and EfficientNet were used in this study, and the dataset used for training was 1,002,718 fashion images and 125 labels including clothing categories and material properties. Based on the weighted F1-Score, ResNet is 0.800 and EfficientNet is 0.781, with ResNet showing better performance.

Case Study of the Image Generative AI Hands-on for UN SDGs Global Citizenship Education (UN SDGs 세계시민교육을 위한 이미지 생성AI 활용사례 연구)

  • Hanjin Lee;Ye-eun Lee;Juwon Yun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.6
    • /
    • pp.263-269
    • /
    • 2024
  • Amidst the global challenges of climate crisis, warfare, and escalating inequality, the pursuit of achieving the United Nations Sustainable Development Goals (SDGs) has become increasingly imperative. Consequently, research into effective pedagogical methodologies from the student perspective continues to gain momentum. Particularly, with the advancement of generative AI technologies, the potential for leveraging such tools in providing global citizenship education to the youth is garnering attention. This study implemented and emphatically analyzed an artificial intelligence educational program focused on the creation of sustainable urban spaces under the UN Academic Impact(UNAI). The findings indicated a high level of literacy pertaining to global citizen AI education, evidenced by increased interest, satisfaction, and recommendation intention. Furthermore, the study observed an enhancement in digital interactions through the processes of posting, viewing, and real-time discussions of the created works with Generative AI such as the ChatGPT, Midjourney, and Stable Diffusion. Through these instances, the study proposes the development of HTHT curricula that enhance creative thinking, collaborative growth, and analytical capabilities.

Development of AI and IoT-based smart farm pest prediction system: Research on application of YOLOv5 and Isolation Forest models (AI 및 IoT 기반 스마트팜 병충해 예측시스템 개발: YOLOv5 및 Isolation Forest 모델 적용 연구)

  • Mi-Kyoung Park;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.771-780
    • /
    • 2024
  • In this study, we implemented a real-time pest detection and prediction system for a strawberry farm using a computer vision model based on the YOLOv5 architecture and an Isolation Forest Classifier. The model performance evaluation showed that the YOLOv5 model achieved a mean average precision (mAP 0.5) of 78.7%, an accuracy of 92.8%, a recall of 90.0%, and an F1-score of 76%, indicating high predictive performance. This system was designed to be applicable not only to strawberry farms but also to other crops and various environments. Based on data collected from a tomato farm, a new AI model was trained, resulting in a prediction accuracy of over 85% for major diseases such as late blight and yellow leaf curl virus. Compared to the previous model, this represented an improvement of more than 10% in prediction accuracy.

Data Efficient Image Classification for Retinal Disease Diagnosis (데이터 효율적 이미지 분류를 통한 안질환 진단)

  • Honggu Kang;Huigyu Yang;Moonseong Kim;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.25 no.3
    • /
    • pp.19-25
    • /
    • 2024
  • The worldwide aging population trend is causing an increase in the incidence of major retinal diseases that can lead to blindness, including glaucoma, cataract, and macular degeneration. In the field of ophthalmology, there is a focused interest in diagnosing diseases that are difficult to prevent in order to reduce the rate of blindness. This study proposes a deep learning approach to accurately diagnose ocular diseases in fundus photographs using less data than traditional methods. For this, Convolutional Neural Network (CNN) models capable of effective learning with limited data were selected to classify Conventional Fundus Images (CFI) from various ocular disease patients. The chosen CNN models demonstrated exceptional performance, achieving high Accuracy, Precision, Recall, and F1-score values. This approach reduces manual analysis by ophthalmologists, shortens consultation times, and provides consistent diagnostic results, making it an efficient and accurate diagnostic tool in the medical field.

Study on the Performance Evaluation of Encoding and Decoding Schemes in Vector Symbolic Architectures (벡터 심볼릭 구조의 부호화 및 복호화 성능 평가에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.229-235
    • /
    • 2024
  • Recent years have seen active research on methods for efficiently processing and interpreting large volumes of data in the fields of artificial intelligence and machine learning. One of these data processing technologies, Vector Symbolic Architecture (VSA), offers an innovative approach to representing complex symbols and data using high-dimensional vectors. VSA has garnered particular attention in various applications such as natural language processing, image recognition, and robotics. This study quantitatively evaluates the characteristics and performance of VSA methodologies by applying five VSA methodologies to the MNIST dataset and measuring key performance indicators such as encoding speed, decoding speed, memory usage, and recovery accuracy across different vector lengths. BSC and VT demonstrated relatively fast performance in encoding and decoding speeds, while MAP and HRR were relatively slow. In terms of memory usage, BSC was the most efficient, whereas MAP used the most memory. The recovery accuracy was highest for MAP and lowest for BSC. The results of this study provide a basis for selecting appropriate VSA methodologies depending on the application area.

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.

A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle (상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구)

  • Kim, JunSeob;Rim, BeanBonyka;Sung, Nak-Jun;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 2020
  • Biometric information indicating measurement items related to human characteristics has attracted great attention as security technology with high reliability since there is no fear of theft or loss. Among these biometric information, fingerprints are mainly used in fields such as identity verification and identification. If there is a problem such as a wound, wrinkle, or moisture that is difficult to authenticate to the fingerprint image when identifying the identity, the fingerprint expert can identify the problem with the fingerprint directly through the preprocessing step, and apply the image processing algorithm appropriate to the problem. Solve the problem. In this case, by implementing artificial intelligence software that distinguishes fingerprint images with cuts and wrinkles on the fingerprint, it is easy to check whether there are cuts or wrinkles, and by selecting an appropriate algorithm, the fingerprint image can be easily improved. In this study, we developed a total of 17,080 fingerprint databases by acquiring all finger prints of 1,010 students from the Royal University of Cambodia, 600 Sokoto open data sets, and 98 Korean students. In order to determine if there are any injuries or wrinkles in the built database, criteria were established, and the data were validated by experts. The training and test datasets consisted of Cambodian data and Sokoto data, and the ratio was set to 8: 2. The data of 98 Korean students were set up as a validation data set. Using the constructed data set, five CNN-based architectures such as Classic CNN, AlexNet, VGG-16, Resnet50, and Yolo v3 were implemented. A study was conducted to find the model that performed best on the readings. Among the five architectures, ResNet50 showed the best performance with 81.51%.

A Study on Automatic Classification Model of Documents Based on Korean Standard Industrial Classification (한국표준산업분류를 기준으로 한 문서의 자동 분류 모델에 관한 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.221-241
    • /
    • 2018
  • As we enter the knowledge society, the importance of information as a new form of capital is being emphasized. The importance of information classification is also increasing for efficient management of digital information produced exponentially. In this study, we tried to automatically classify and provide tailored information that can help companies decide to make technology commercialization. Therefore, we propose a method to classify information based on Korea Standard Industry Classification (KSIC), which indicates the business characteristics of enterprises. The classification of information or documents has been largely based on machine learning, but there is not enough training data categorized on the basis of KSIC. Therefore, this study applied the method of calculating similarity between documents. Specifically, a method and a model for presenting the most appropriate KSIC code are proposed by collecting explanatory texts of each code of KSIC and calculating the similarity with the classification object document using the vector space model. The IPC data were collected and classified by KSIC. And then verified the methodology by comparing it with the KSIC-IPC concordance table provided by the Korean Intellectual Property Office. As a result of the verification, the highest agreement was obtained when the LT method, which is a kind of TF-IDF calculation formula, was applied. At this time, the degree of match of the first rank matching KSIC was 53% and the cumulative match of the fifth ranking was 76%. Through this, it can be confirmed that KSIC classification of technology, industry, and market information that SMEs need more quantitatively and objectively is possible. In addition, it is considered that the methods and results provided in this study can be used as a basic data to help the qualitative judgment of experts in creating a linkage table between heterogeneous classification systems.