• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.027 seconds

Analysis of Effects of Small School Space Innovation (소규모 학교공간혁신 효과성 분석)

  • Kwon, Soon-Chul;Lee, Yong-Hwan
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • The downsizing of schools is accelerating due to a rapid decline in the school-age population, and as the crisis over regional and school disappearance increases, the need for smaller schools to respond to future educational needs is increasing. Through flexible curricula and digital/artificial intelligence-based classroom teaching improvements, students' satisfaction with school life, student creativity and character development, improved academic achievement, and strengthened cooperative communication capabilities will be observed, and teachers' teaching and learning methods will change. Educational effects such as these are important, and transforming school facilities into future-oriented spaces, including school space innovation, is required to accomplish them. This study examined the future of education systems in small schools, focusing on analyzing the educational effects and awareness of the sustainability of spatial innovation, in terms of school space changes, school education correlation, and smart environment, to develop innovation projects in small schools. A desirable direction for implementation is presented.

Why do children loose their compliance with the law as they grow? (무법으로 태어나 준법을 거쳐 위법으로 성장하는 이유?)

  • Taekyun Hur
    • Korean Journal of Culture and Social Issue
    • /
    • v.11 no.spc
    • /
    • pp.117-131
    • /
    • 2005
  • The present research integrated various theoretical perspectives of human unlawful behaviors in order to clarify the psychological mechanisms that underly the changes in compliance with and attitude toward law as time goes. Most well-known theories such as classical theory of crime, biosocial and evoluationary theories, and psychological perspectives including psycho-dynamic theory, personality, intellectual/moral development theories, and decision-making were discussed in their unique points in explaining human unlawful behaviors. Finally, social-learning theory and cognitive-dissonance theory has been suggested to explain the psychological mechanism of the phenomena in which people's attitude toward law and compliance with law become weaken through violation experiences of trivial lawful regulations. Especially, the logic of cognitive-dissonance theory (that people committed violation of trivial laws should experience dissonance with their original belief of compliance with law and negative arousal and try to remove the arousal by change their belief along with their behavior) were theoretically convincing to explain the phenomenon and supported by a series of experimental studies. Several practical implications for future constitutional and political activities were discussed in the basis of the cognitive dissonance theory.

Motion Response Estimation of Fishing Boats Using Deep Neural Networks (심층신경망을 이용한 어선의 운동응답 추정)

  • TaeWon Park;Dong-Woo Park;JangHoon Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.958-963
    • /
    • 2023
  • Lately, there has been increasing research on the prediction of motion performance using artificial intelligence for the safe design and operation of ships. However, compared to conventional ships, research on small fishing boats is insufficient. In this paper, we propose a model that estimates the motion response essential for calculating the motion performance of small fishing boats using a deep neural network. Hydrodynamic analysis was conducted on 15 small fishing boats, and a database was established. Environmental conditions and main particulars were applied as input data, and the response amplitude operators were utilized as the output data. The motion response predicted by the trained deep neural network model showed similar trends to the hydrodynamic analysis results. The results showed that the high-frequency motion responses were predicted well with a low error. Based on this study, we plan to extend existing research by incorporating the hull shape characteristics of fishing boats into a deep neural network model.

Selection Criteria of Target Systems for Quality Management of National Defense Data (국방데이터 품질관리를 위한 대상 체계 선정 기준)

  • Jiseong Son;Yun-Young Hwang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.155-160
    • /
    • 2023
  • In principle, data from all databases and systems managed by the Ministry of Defense or public institutions must be guaranteed to have a certain level of quality or higher, but since most information systems are built and operated, data quality management for all systems is realistically limited. Most defense data is not disclosed due to the nature of the work, and many systems are strategically developed or integrated and managed by the military depending on the need and importance of the work. In addition, many types of data that require data quality management are being accumulated and generated, such as sensor data generated from weapon systems, unstructured data, and artificial intelligence learning data. However, there is no data quality management guide for defense data and a guide for selecting quality control targets, and the selection criteria are ambiguous to select databases and systems for quality control of defense data according to the standards of the public data quality management manual. Depends on the person in charge. Therefore, this paper proposes criteria for selecting a target system for quality control of defense data, and describes the relationship between the proposed selection criteria and the selection criteria in the existing manual.

ChatGPT-based Software Requirements Engineering (ChatGPT 기반 소프트웨어 요구공학)

  • Jongmyung Choi
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.45-50
    • /
    • 2023
  • In software development, the elicitation and analysis of requirements is a crucial phase, and it involves considerable time and effort due to the involvement of various stakeholders. ChatGPT, having been trained on a diverse array of documents, is a large language model that possesses not only the ability to generate code and perform debugging but also the capability to be utilized in the domain of software analysis and design. This paper proposes a method of requirements engineering that leverages ChatGPT's capabilities for eliciting software requirements, analyzing them to align with system goals, and documenting them in the form of use cases. In software requirements engineering, it suggests that stakeholders, analysts, and ChatGPT should engage in a collaborative model. The process should involve using the outputs of ChatGPT as initial requirements, which are then reviewed and augmented by analysts and stakeholders. As ChatGPT's capability improves, it is anticipated that the accuracy of requirements elicitation and analysis will increase, leading to time and cost savings in the field of software requirements engineering.

Analyzing Teachers' Educational Needs to Strengthen AI Convergence Education Capabilities (AI 융합교육 역량 강화를 위한 교사의 교육요구도 분석)

  • JaMee Kim;Yong Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.121-130
    • /
    • 2023
  • In the school field, AI convergence education is recommended, which utilizes AI in education to change the paradigm of society. This study was conducted to define the terms of AI and AI convergence education to minimize the confusion of terms and to analyze the educational needs of teachers from the perspective of conducting AI convergence education. To achieve the purpose, 19 experts' opinions were collected, and a self-administered questionnaire was administered to 125 secondary school teachers enrolled in the AI convergence major at the Graduate School of Education. As a result of the analysis, the experts defined AI convergence education as a methodology for problem solving, not AI-based or utilization education. In the analysis of teachers' educational needs, "AI and big data" was ranked first, followed by "AI convergence education methodology" and "learning practice using AI". The significance of this study is that it defined the terminology by collecting the opinions of experts amidst the confusion of various terms related to AI, and presented the educational direction of AI convergence education for in-service teachers.

Method of Automatically Generating Metadata through Audio Analysis of Video Content (영상 콘텐츠의 오디오 분석을 통한 메타데이터 자동 생성 방법)

  • Sung-Jung Young;Hyo-Gyeong Park;Yeon-Hwi You;Il-Young Moon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.557-561
    • /
    • 2021
  • A meatadata has become an essential element in order to recommend video content to users. However, it is passively generated by video content providers. In the paper, a method for automatically generating metadata was studied in the existing manual metadata input method. In addition to the method of extracting emotion tags in the previous study, a study was conducted on a method for automatically generating metadata for genre and country of production through movie audio. The genre was extracted from the audio spectrogram using the ResNet34 artificial neural network model, a transfer learning model, and the language of the speaker in the movie was detected through speech recognition. Through this, it was possible to confirm the possibility of automatically generating metadata through artificial intelligence.

Development of AI-based Smart Agriculture Early Warning System

  • Hyun Sim;Hyunwook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.67-77
    • /
    • 2023
  • This study represents an innovative research conducted in the smart farm environment, developing a deep learning-based disease and pest detection model and applying it to the Intelligent Internet of Things (IoT) platform to explore new possibilities in the implementation of digital agricultural environments. The core of the research was the integration of the latest ImageNet models such as Pseudo-Labeling, RegNet, EfficientNet, and preprocessing methods to detect various diseases and pests in complex agricultural environments with high accuracy. To this end, ensemble learning techniques were applied to maximize the accuracy and stability of the model, and the model was evaluated using various performance indicators such as mean Average Precision (mAP), precision, recall, accuracy, and box loss. Additionally, the SHAP framework was utilized to gain a deeper understanding of the model's prediction criteria, making the decision-making process more transparent. This analysis provided significant insights into how the model considers various variables to detect diseases and pests.

Deep Learning-Based Personalized Recommendation Using Customer Behavior and Purchase History in E-Commerce (전자상거래에서 고객 행동 정보와 구매 기록을 활용한 딥러닝 기반 개인화 추천 시스템)

  • Hong, Da Young;Kim, Ga Yeong;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.237-244
    • /
    • 2022
  • In this paper, we present VAE-based recommendation using online behavior log and purchase history to overcome data sparsity and cold start. To generate a variable for customers' purchase history, embedding and dimensionality reduction are applied to the customers' purchase history. Also, Variational Autoencoders are applied to online behavior and purchase history. A total number of 12 variables are used, and nDCG is chosen for performance evaluation. Our experimental results showed that the proposed VAE-based recommendation outperforms SVD-based recommendation. Also, the generated purchase history variable improves the recommendation performance.

Implementation of a Mobile App for Companion Dog Training using AR and Hand Tracking (AR 및 Hand Tracking을 활용한 반려견 훈련 모바일 앱 구현)

  • Chul-Ho Choi;Sung-Wook Park;Se-Hoon Jung;Chun-Bo Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.927-934
    • /
    • 2023
  • With the recent growth of the companion animal market, various social issues related to companion animals have also come to the forefront. Notable problems include incidents of dog bites, the challenge of managing abandoned companion animals, euthanasia, animal abuse, and more. As potential solutions, a variety of training programs such as companion animal-focused broadcasts and educational apps are being offered. However, these options might not be very effective for novice caretakers who are uncertain about what to prioritize in training. While training apps that are relatively easy to access have been widely distributed, apps that allow users to directly engage in training and learn through hands-on experience are still insufficient. In this paper, we propose a more efficient AR-based mobile app for companion animal training, utilizing the Unity engine. The results of usability evaluations indicated increased user engagement due to the inclusion of elements that were previously absent. Moreover, training immersion was enhanced, leading to improved learning outcomes. With further development and subsequent verification and production, we anticipate that this app could become an effective training tool for novice caretakers planning to adopt companion animals, as well as for experienced caretakers.