• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.028 seconds

Prediction of dam inflow based on LSTM-s2s model using luong attention (Attention 기법을 적용한 LSTM-s2s 모델 기반 댐유입량 예측 연구)

  • Lee, Jonghyeok;Choi, Suyeon;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.495-504
    • /
    • 2022
  • With the recent development of artificial intelligence, a Long Short-Term Memory (LSTM) model that is efficient with time-series analysis is being used to increase the accuracy of predicting the inflow of dams. In this study, we predict the inflow of the Soyang River dam, using the LSTM model with the Sequence-to-Sequence (LSTM-s2s) and attention mechanism (LSTM-s2s with attention) that can further improve the LSTM performance. Hourly inflow, temperature, and precipitation data from 2013 to 2020 were used to train the model, and validate and test for evaluating the performance of the models. As a result, the LSTM-s2s with attention showed better performance than the LSTM-s2s in general as well as in predicting a peak value. Both models captured the inflow pattern during the peaks but detailed hourly variability is limitedly simulated. We conclude that the proposed LSTM-s2s with attention can improve inflow forecasting despite its limits in hourly prediction.

Deep Learning for Remote Sensing Applications (원격탐사활용을 위한 딥러닝기술)

  • Lee, Moung-Jin;Lee, Won-Jin;Lee, Seung-Kuk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1581-1587
    • /
    • 2022
  • Recently, deep learning has become more important in remote sensing data processing. Huge amounts of data for artificial intelligence (AI) has been designed and built to develop new technologies for remote sensing, and AI models have been learned by the AI training dataset. Artificial intelligence models have developed rapidly, and model accuracy is increasing accordingly. However, there are variations in the model accuracy depending on the person who trains the AI model. Eventually, experts who can train AI models well are required more and more. Moreover, the deep learning technique enables us to automate methods for remote sensing applications. Methods having the performance of less than about 60% in the past are now over 90% and entering about 100%. In this special issue, thirteen papers on how deep learning techniques are used for remote sensing applications will be introduced.

Pattern Analysis of Apartment Price Using Self-Organization Map (자기조직화지도를 통한 아파트 가격의 패턴 분석)

  • Lee, Jiyoung;Ryu, Jae Pil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.27-33
    • /
    • 2021
  • With increasing interest in key areas of the 4th industrial revolution such as artificial intelligence, deep learning and big data, scientific approaches have developed in order to overcome the limitations of traditional decision-making methodologies. These scientific techniques are mainly used to predict the direction of financial products. In this study, the factors of apartment prices, which are of high social interest, were analyzed through SOM. For this analysis, we extracted the real prices of the apartments and selected a total of 16 input variables that would affect these prices. The data period was set from 1986 to 2021. As a result of examining the characteristics of the variables during the rising and faltering periods of the apartment prices, it was found that the statistical tendencies of the input variables of the rising and the faltering periods were clearly distinguishable. I hope this study will help us analyze the status of the real estate market and study future predictions through image learning.

A Black Ice Detection Method Using Infrared Camera and YOLO (적외선 카메라와 YOLO를 사용한 블랙아이스 탐지 방법)

  • Kim, Hyung Gyun;Jang, Min Seok;Lee, Yon Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1874-1881
    • /
    • 2021
  • Black ice, which occurs mainly on the road, vehicle traffic bridges and tunnel entrances due to the sub-zero temperature due to the slip of the road due to heavy snow, is not recognized because the image of asphalt is transmitted in the driver's view, so the vehicle loses braking power because it causes serious loss of life and property. In this paper, we propose a method to identify the black ice by using infrared camera and to identify the road condition by using deep learning to compensate for the disadvantages of existing black ice detection methods (artificial satellite imaging, checking the pattern of slip by ultrasonic reception, measuring the temperature of the road surface, and checking the difference in friction force of the tire during vehicle driving) and to reduce the size of the sensor to detect black ice.

Brain Correlates of Emotion for XR Auditory Content (XR 음향 콘텐츠 활용을 위한 감성-뇌연결성 분석 연구)

  • Park, Sangin;Kim, Jonghwa;Park, Soon Yong;Mun, Sungchul
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.738-750
    • /
    • 2022
  • In this study, we reviewed and discussed whether auditory stimuli with short length can evoke emotion-related neurological responses. The findings implicate that if personalized sound tracks are provided to XR users based on machine learning or probability network models, user experiences in XR environment can be enhanced. We also investigated that the arousal-relaxed factor evoked by short auditory sound can make distinct patterns in functional connectivity characterized from background EEG signals. We found that coherence in the right hemisphere increases in sound-evoked arousal state, and vice versa in relaxed state. Our findings can be practically utilized in developing XR sound bio-feedback system which can provide preference sound to users for highly immersive XR experiences.

Adaptive Face Mask Detection System based on Scene Complexity Analysis

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) has affected the world seriously. Every person is required for wearing a mask properly in a public area to prevent spreading the virus. However, many people are not wearing a mask properly. In this paper, we propose an efficient mask detection system. In our proposed system, we first detect the faces of input images using YOLOv5 and classify them as the one of three scene complexity classes (Simple, Moderate, and Complex) based on the number of detected faces. After that, the image is fed into the Faster-RCNN with the one of three ResNet (ResNet-18, 50, and 101) as backbone network depending on the scene complexity for detecting the face area and identifying whether the person is wearing the mask properly or not. We evaluated our proposed system using public mask detection datasets. The results show that our proposed system outperforms other models.

Analysis and Design of Cattle Management System based on IoT (사물인터넷 기반 소관리 시스템의 분석 및 설계)

  • Cho, Byung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.125-130
    • /
    • 2021
  • Implementation of livestock smart-farm can be done more effectively with IoT technology developing. An build of useful stock management system can be possibile if push messages of these judgement are notified on smart-phone after cattle's illness and estrus are judged using IoT technology. These judgement method of cattle's illness and estrus can be done with gathering living stock data using temperature sensor and 3 axis acceleration sensor and sending these data using IoT and internet network into server, and studying AI machine learning using these data. In this paper, to build this cattle management system based on IoT, effective system of the whole architecture is showed. Also an effective analysis and design method to develop this system software will be presented by showing user requirement analysis using object-oriented method, flowchart and screen design.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.

Disease Prediction System based on WEB (WEB 기반 질병 예측 시스템)

  • Hong, YouSik;Han, Y.H.;Lee, W.B.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.125-132
    • /
    • 2022
  • The Ministry of Environment recently analyzed the output data of 10 fine dust measuring stations and, as a result, announced that about 60% had an error that the existing atmospheric measurement concentration was higher. In order to accurately predict fine dust, the wind direction and measurement position must be corrected. In this paper, in order to solve these problems, fuzzy rules are used to solve these problems. In addition, in order to calculate the fine particulate sensation index actually felt by pedestrians on the street, a computer simulation experiment was conducted to calculate the fine particulate sensation index in consideration of weather conditions, temperature conditions, humidity conditions, and wind conditions.

Machine Learning-Based Malicious URL Detection Technique (머신러닝 기반 악성 URL 탐지 기법)

  • Han, Chae-rim;Yun, Su-hyun;Han, Myeong-jin;Lee, Il-Gu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.555-564
    • /
    • 2022
  • Recently, cyberattacks are using hacking techniques utilizing intelligent and advanced malicious codes for non-face-to-face environments such as telecommuting, telemedicine, and automatic industrial facilities, and the damage is increasing. Traditional information protection systems, such as anti-virus, are a method of detecting known malicious URLs based on signature patterns, so unknown malicious URLs cannot be detected. In addition, the conventional static analysis-based malicious URL detection method is vulnerable to dynamic loading and cryptographic attacks. This study proposes a technique for efficiently detecting malicious URLs by dynamically learning malicious URL data. In the proposed detection technique, malicious codes are classified using machine learning-based feature selection algorithms, and the accuracy is improved by removing obfuscation elements after preprocessing using Weighted Euclidean Distance(WED). According to the experimental results, the proposed machine learning-based malicious URL detection technique shows an accuracy of 89.17%, which is improved by 2.82% compared to the conventional method.