• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.024 seconds

Designing a Multimodal MyData Distribution System for Voluntary Acquisition of AI Training Data (인공지능 학습데이터 자발적 확보를 위한 멀티모달 마이데이터 유통시스템 설계)

  • Dong-Hyun Lim;Dea-Woo Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.895-902
    • /
    • 2024
  • AI requires learning, and learning requires data. Some data is copyright-free, such as mountains, oceans, and terrain, while others are restricted by various laws, such as privacy and copyright laws. This thesis investigates how data subjects can voluntarily consent and participate in the collection, utilization, and distribution of their data, overcoming legal restrictions. We design a system that creates specific spaces in public places, engages businesses to define the data needed for learning, and rewards citizens for voluntarily participating in the collection of Multimodal MyData in specific spaces. In addition, a system that enables authentication, distribution, and sale/resale of generated data in connection with the government's MyData platform will be implemented. If this is led by the government, it will be possible to collect data for learning in a new way without legal sanctions for each learning domain, which will further revitalize the development and utilization of AI technology.

Deep Neural Network Analysis System by Visualizing Accumulated Weight Changes (누적 가중치 변화의 시각화를 통한 심층 신경망 분석시스템)

  • Taelin Yang;Jinho Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.85-92
    • /
    • 2023
  • Recently, interest in artificial intelligence has increased due to the development of artificial intelligence fields such as ChatGPT and self-driving cars. However, there are still many unknown elements in training process of artificial intelligence, so that optimizing the model requires more time and effort than it needs. Therefore, there is a need for a tool or methodology that can analyze the weight changes during the training process of artificial intelligence and help out understatnding those changes. In this research, I propose a visualization system which helps people to understand the accumulated weight changes. The system calculates the weights for each training period to accumulates weight changes and stores accumulated weight changes to plot them in 3D space. This research will allow us to explore different aspect of artificial intelligence learning process, such as understanding how the model get trained and providing us an indicator on which hyperparameters should be changed for better performance. These attempts are expected to explore better in artificial intelligence learning process that is still considered as unknown and contribute to the development and application of artificial intelligence models.

Fuzzy Neural Network Model Using A Learning Rule Considering the Distance Between Classes (클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델)

  • Kim Yong-Su;Baek Yong-Seon;Lee Se-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문은 클래스들의 대표값들과 입력 벡터와의 거리를 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 이 새로운 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류 역전파 신경회로망과 LVQ 알고리즘보다 성능이 우수하였다.

  • PDF

Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization (PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화)

  • Kim Seung-Seok;Kim Yong-Tae;Kim Ju-Sik;Jeon Byeong-Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Learning Algorithm of Neural Networks Using Rough Set (러프집합을 이용한 신경망 학습알고리즘)

  • 손현숙;피수영;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.327-330
    • /
    • 1997
  • 패턴인식중에서 가장 기본적인 문제인 판별문제를 대상으로 러프집합을 이용한 판별분석을 행하는 신경망의 학습알고리즘을 제안한다. 어떤군에 속할 것인가의 경계영역을 명확히 하는 것을 목적으로 한다. 2군 판별의 문제를 각 데이터가 각 군에 속한 정도를 표현하는 소속함수(membership function)을 이용하며, 경계영역에 대한 문제는 소속함수를 구간치 함수로 확장하여 가능성과 필연성을 동시에 표현할 수 있는 학습 알고리즘을 제안한다.

  • PDF

Fuzzy LQRQL Control (퍼지 LQRQL 제어)

  • 김영일;김종호;박주영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.125-128
    • /
    • 2004
  • Q-learning은 강화학습의 한 방법으로서, 여러 분야에 널리 응용되고 있는 기법이다. 최근에는 Linear Quadratic Regulation (이하 LQR) 문제에 성공적으로 적용된 바 있다. 특히 시스템 모델의 파라미터에 대한 구체적인 정보가 없는 상태에서 적절한 입력과 출력만을 가지고, 학습을 통해 문제를 해결할 수 있어서 상황에 따라서 매우 실용적인 대안이 될 수 있다. 이에 따라 본 논문에서는 이러한 일반적인 LQR Q-learning(이하 LQRQL) 학습방법에 퍼지 모델을 이용하여 제어기를 설계하는 방법을 고려하고, 일반적인 LQROL 기법과 본 논문에서 제시한 방법의 결과를 비교하여 응용 가능성을 살펴보았다.

  • PDF

Determination of Usenet News Groups by Fuzzy Inference and Neural Network (퍼지추론과 신경망을 사용한 유즈넷 뉴스그룹 결정)

  • 김종완;김희재;김병만
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.401-404
    • /
    • 2004
  • 본 연구에서는 다양한 뉴스그룹들 중에서 사용자의 취향과 유사한 뉴스그룹들을 코호넨 신경망을 이용하여 추천해주는 방법을 제시한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 여러 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 하지만 신경망의 학습패턴을 관찰해 보면, 맡은 부분이 비어있는 희소성 문제를 발견할 수 있다. 이에 본 연구에서는 통계적인 결정계수를 도입하여 불필요한 차원을 제거한 후 신경망을 학습시키는 새로운 방법을 제안한다. 제안된 방법은 모든 차원을 활용할 때 보다 클러스터내 거리와 클러스터간 거리의 척도를 이용한 클러스터 중첩도 면에서 우수한 분류 성능을 보여줌을 확인하였다.

  • PDF

Handprinted Korean Characters Recognition System bu Using New jaso Decompostion Method (새로은 자소분리 기법을 이용한 필기체 한글인식 시스템)

  • 박희주;김진호;오광식
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.101-110
    • /
    • 1995
  • 본 논문에서는 새로은 자소분리 기법을 이용한 필기체 한글인식 시스템을 제안하였다. 새로운 자소분리 기법에는 국소영역 투영기법과 국소영역 Blob Coloring 기법이 포함되어 있다. 한극 각 자소의 특징들을 이용하여 Backpropagaton 알고리듬으로 학습시켰고 인식과정에서 관심영역 탐색기법이 이용되었다. 4명의 필기자가 작성한 1600자의 한글을 학습시키고 학습되지 않은 밝기 영상의 문서에 대한 인식을 시도한 결과 95%의 인식률을 얻었다.

  • PDF

Learning Model for Recommendation of Humor Documents (은닉 변수 모델을 이용한 문서 추천)

  • 이종우;장병탁
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.514-519
    • /
    • 2002
  • 우리는 유머문서의 추천을 위해서 문서 정보, 사용자 정보, 공통 등급매김 정보 등을 모두 이용하는 4 개의 관찰 변수와 이들간 관계의 학습을 위한 은닉변수를 사용한 확률모델을 구축하였다. 이 모델은 학습된 은닉 변수와 가시 변수 간의 관계를 통해 누락 관찰 데이터에 대해서도 추정값을 유도해 낼 수 있으므로 등급매김 정보가 부족하거나 새로운 사용자와 문서의 도입시에 안정적인 추천 성능을 보여 줄 수가 있다. 또한 확률 모델의 학습을 위해서 EMl 알고리즘을 이용하였는데 저평가된 데이터의 이용도를 높이기 위해서 추천을 반대하는 확률 모델을 따로 두고 이들간에 분류모델(classification model)을 두어서 추정값을 분류해내는 방식을 취한다.

  • PDF

Color Space Classification by Using Additive Competitive Learning (가산 경쟁학습을 이용한 컬러공간의 분류)

  • Park, Yong-Hoon;Cho, Yong-Gun;Kang, Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.125-128
    • /
    • 2003
  • 생물학적 비전 시스템에서 컬러정보는 윤곽정보와 함께 가장 주요한 정보이다. 본 논문에서는 컬러공간의 분류를 위해 향상된 가산 경쟁학습 모델을 제안하며, 제안된 가산 경쟁학습 모델을 사용하여 컬러공간의 분류를 효과적으로 할 수 있다는 것을 보였다.

  • PDF