• Title/Summary/Keyword: 학습자 말뭉치

Search Result 36, Processing Time 0.022 seconds

Context Based Real-time Korean Writing Correcting for Foriengers (외국인 학습자를 위한 문맥 기반 실시간 국어 문장 교정)

  • Park, Young-Keun;Choi, Jae-Sung;Kim, Jae-Min;Lee, Seong-Dong;Lee, Hyun-Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.273-275
    • /
    • 2016
  • 외국인 유학생과 국내 체류 외국인을 포함하여 한국어를 학습하고자 하는 외국인이 지속적으로 증가함에 따라, 외국인 한국어 학습자의 교육에 대한 관심도 높아지고 있다. 기존 맞춤법 검사기는 한국어를 충분히 이해할 수 있는 한국인의 사용에 중점을 두고 있어, 외국인 한국어 학습자가 사용하기에는 다소 부적절하다. 본 논문에서는 한국어의 문맥 특성과 외국인의 작문 특성을 반영한 한국어 교정 방식을 제안한다. 제안하는 시스템에서는 말뭉치에서 추출한 어절 바이그램에 대한 음절 역색인을 구성하여 추천 표현을 빠르게 제시할 수 있으며, 키보드 후킹에 기반한 사용자인터페이스를 제공하여 사용자 편의를 높인다.

  • PDF

BackTranScription (BTS)-based Jeju Automatic Speech Recognition Post-processor Research (BackTranScription (BTS)기반 제주어 음성인식 후처리기 연구)

  • Park, Chanjun;Seo, Jaehyung;Lee, Seolhwa;Moon, Heonseok;Eo, Sugyeong;Jang, Yoonna;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.178-185
    • /
    • 2021
  • Sequence to sequence(S2S) 기반 음성인식 후처리기를 훈련하기 위한 학습 데이터 구축을 위해 (음성인식 결과(speech recognition sentence), 전사자(phonetic transcriptor)가 수정한 문장(Human post edit sentence))의 병렬 말뭉치가 필요하며 이를 위해 많은 노동력(human-labor)이 소요된다. BackTranScription (BTS)이란 기존 S2S기반 음성인식 후처리기의 한계점을 완화하기 위해 제안된 데이터 구축 방법론이며 Text-To-Speech(TTS)와 Speech-To-Text(STT) 기술을 결합하여 pseudo 병렬 말뭉치를 생성하는 기술을 의미한다. 해당 방법론은 전사자의 역할을 없애고 방대한 양의 학습 데이터를 자동으로 생성할 수 있기에 데이터 구축에 있어서 시간과 비용을 단축 할 수 있다. 본 논문은 BTS를 바탕으로 제주어 도메인에 특화된 음성인식 후처리기의 성능을 향상시키기 위하여 모델 수정(model modification)을 통해 성능을 향상시키는 모델 중심 접근(model-centric) 방법론과 모델 수정 없이 데이터의 양과 질을 고려하여 성능을 향상시키는 데이터 중심 접근(data-centric) 방법론에 대한 비교 분석을 진행하였다. 실험결과 모델 교정없이 데이터 중심 접근 방법론을 적용하는 것이 성능 향상에 더 도움이 됨을 알 수 있었으며 모델 중심 접근 방법론의 부정적 측면 (negative result)에 대해서 분석을 진행하였다.

  • PDF

Characteristics of Intermediate/Advanced Korean Inter-Englishes: A Corpus-Linguistic Analysis. (우리나라 중.상급학습자 영어의 특징 : 말뭉치 언어학적 분석)

  • 안성호;이영미
    • Korean Journal of English Language and Linguistics
    • /
    • v.4 no.1
    • /
    • pp.83-102
    • /
    • 2004
  • The purpose of this paper is to find out some major characteristics of intermediate-advanced Korean learners' English by corpus- linguistically analyzing their essays in comparison with native speakers'. We construct a corpus of CBT TOEFL essays by Korean learners, NNS1 (94076 words in 402 texts), and its sub-corpus, NNS2 (14291 words in 45 texts), and then a corpus of model essays written or meticulously edited by native speakers, NS (14833 words in 35 texts). We compare NNS1 and NNS2 with NS, and with some other corpora, in terms of high-frequency words, and show that Korean learners' writings have more features of informal writing than those of formal writing, which is in accord with the reports in Granger (1998) that EFL writings by European advanced learners are characterized by informality.

  • PDF

A Study to Rethink the Components of Teaching Korean Genitive Particle '의': Based on the Errors in Korean Learners' Corpus (한국어 학습자 대상 관형격 조사 '의'의 교육 내용 재고: 학습자 말뭉치에 나타난 오류를 바탕으로)

  • Soo-Hyun Lee;Ji-Young Sim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.443-454
    • /
    • 2023
  • The purpose of this study is to reveal the Korean learners' usage pattern of '의', the genitive particle, according to semantic classification, so that it can be referred to in determining the contents and methods of related education. The method of this study adopts a quantitative analysis using learners corpus established by National Institute of Korean Language. As a result of the analysis, as proficiency increases, the overall frequency of '의' increases and the number of meaning senses used increases. However, the frequency of errors also increases with it. As for the usage pattern of each sense, the meaning of 'ownership, belonging' is the most frequent, and followed by 'acting entity', 'kinship, social relations', and 'relationship(area)'. In conclusion, the meanings of 'acting subjects' and 'relationships(area) need to be supplemented with explicit education. Other meanings need to be discussed, and decisions should be made in consideration of learning purpose and proficiency.

Synonym Emotional Adjectives in Coordination: Analyzing [Emotional Adjective + '-ko(and)'] + Emotional Adjective] Structures in Korean (감정형용사 유의어 결합 연구 -[[감정형용사 + '-고'] + 감정형용사] 구성-)

  • Park, JINA;Jeong, Yong-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.565-577
    • /
    • 2024
  • This discussion looked at how emotional adjectives are connected in the format [[emotional adjective + '-ko(and)'] + emotional adjective]. As a result, it was confirmed that there are quite a few cases in which two or more emotional adjectives are used to express emotions in Korean. This can help Korean learners understand and express the individual lexical meanings of emotional adjectives more clearly by identifying emotional adjectives that are used together with the corresponding configuration. It was believed that it could help Korean language learners express complex emotions or create rich emotional expressions when expressing their emotions in Korean. It is hoped that the examples and frequency of [[emotional adjective+'-ko(and)'+emotional adjective] shown in this discussion will be of some help in teaching and learning Korean emotional vocabulary.

English Hedge Expressions and Korean Endings: Grammar Explanation for English-Speaking Leaners of Korean (영어 완화 표지와 한국어 종결어미 비교 - 영어권 학습자를 위한 문법 설명 -)

  • Kim, Young A
    • Journal of Korean language education
    • /
    • v.25 no.1
    • /
    • pp.1-27
    • /
    • 2014
  • This study investigates how common English hedge expressions such as 'I think' and 'I guess' appear in Korean, with the aim of providing explicit explanation for English-speaking leaners of Korean. Based on a contrastive analysis of spoken English and Korean corpus, this study argues three points: Firstly, 'I guess' appears with a wider variety of modalities in Korean than 'I think'. Secondly, this study has found that Korean textbooks contain inappropriate use of registers regarding the English translations of '-geot -gat-': although these markers are used in spoken Korean, they were translated into written English. Therefore, this study suggests that '-geot -gat-' be translated into 'I think' in spoken English, and into 'it seems' in the case of written English and narratives. Lastly, the contrastive analysis has shown that when 'I think' is used with deontic modalities such as 'I think I have to', Korean use '-a-ya-get-': the use of hedge marker 'I think' with 'I have to', which shows obligation or speaker's volition turns the deontic modalities into expressions of speaker's opinion.

Acquisition and Development of particles of Beginner Level Korean Language Learners (초급 한국어 학습자의 조사 습득 및 발달 연구)

  • 이승연;이유경;최은지;이선영
    • Language Facts and Perspectives
    • /
    • v.48
    • /
    • pp.505-541
    • /
    • 2019
  • This research aims to analyze Korean language learners' spoken corpus to reveal their acquisition order and development patterns of particles. To this end, we collected free conversation data of beginning level Korean language learners over five months and constructed a corpus. It was confirmed that particle acquisition takes place over four stages based on the frequency of particle use and its accuracy. The stages of development were first 'ey, un/nun, i/ka(nominative), ul/lul', second 'eyse, hako(conjunction), to, hako(adverbial)', third '(u)lo, pota, man, eykey, kkaci, puthe, kkeyse, ui', and fourth 'hanthey, (i)na(conjunction), wa/kwa(conjunction), kkey, (i)lang(adverbial), eykeyse, mata, wa/kwa(adverbial), (i)na(auxiliary particle), pakkey, (i)lang(conjunction)'. Based on these findings, the characteristics shown in the particle use of beginning level learners are as the following. First, case markers start to develop foremost. Second, the accuracy of each particle use tends to decrease slightly over time. Third, the frequency of some particles was observed to suddenly increase and then decrease again at a certain period. Fourth, the order of most, but not all particles' appearance seemed to be related to the order of being introduced in textbooks. It is important that this research provides implications for grammar education when establishing Korean language education curriculum or developing grammar syllabus.

Hate Speech Detection in Chatbot Data Using KoELECTRA (KoELECTRA를 활용한 챗봇 데이터의 혐오 표현 탐지)

  • Shin, Mingi;Chin, Hyojin;Song, Hyeonho;Choi, Jeonghoi;Lim, Hyeonseung;Cha, Meeyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.518-523
    • /
    • 2021
  • 챗봇과 같은 대화형 에이전트 사용이 증가하면서 채팅에서의 혐오 표현 사용도 더불어 증가하고 있다. 혐오 표현을 자동으로 탐지하려는 노력은 다양하게 시도되어 왔으나, 챗봇 데이터를 대상으로 한 혐오 표현 탐지 연구는 여전히 부족한 실정이다. 이 연구는 혐오 표현을 포함한 챗봇-사용자 대화 데이터 35만 개에 한국어 말뭉치로 학습된 KoELETRA 기반 혐오 탐지 모델을 적용하여, 챗봇-사람 데이터셋에서의 혐오 표현 탐지의 성능과 한계점을 검토하였다. KoELECTRA 혐오 표현 분류 모델은 챗봇 데이터셋에 대해 가중 평균 F1-score 0.66의 성능을 보였으며, 오탈자에 대한 취약성, 맥락 미반영으로 인한 편향 강화, 가용한 데이터의 정확도 문제가 주요한 한계로 포착되었다. 이 연구에서는 실험 결과에 기반해 성능 향상을 위한 방향성을 제시한다.

  • PDF

Analysis of Korean Language Parsing System and Speed Improvement of Machine Learning using Feature Module (한국어 의존 관계 분석과 자질 집합 분할을 이용한 기계학습의 성능 개선)

  • Kim, Seong-Jin;Ock, Cheol-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.66-74
    • /
    • 2014
  • Recently a variety of study of Korean parsing system is carried out by many software engineers and linguists. The parsing system mainly uses the method of machine learning or symbol processing paradigm. But the parsing system using machine learning has long training time because the data of Korean sentence is very big. And the system shows the limited recognition rate because the data has self error. In this thesis we design system using feature module which can reduce training time and analyze the recognized rate each the number of training sentences and repetition times. The designed system uses the separated modules and sorted table for binary search. We use the refined 36,090 sentences which is extracted by Sejong Corpus. The training time is decreased about three hours and the comparison of recognized rate is the highest as 84.54% when 10,000 sentences is trained 50 times. When all training sentence(32,481) is trained 10 times, the recognition rate is 82.99%. As a result it is more efficient that the system is used the refined data and is repeated the training until it became the steady state.

Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology (한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론)

  • Solee Im;Wonjun Lee;Gary Geunbae Lee;Yunsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF