Kubernetes is a representative open-source software for container orchestration, playing a crucial role in monitoring and managing resources allocated to containers. As container environments become prevalent, security threats targeting containers continue to rise, with resource exhaustion attacks being a prominent example. These attacks involve distributing malicious crypto-mining software in containerized form to hijack computing resources, thereby affecting the operation of the host and other containers that share resources. Previous research has focused on detecting resource depletion attacks, so technology to respond when attacks occur is lacking. This paper proposes a reinforcement learning-based dynamic resource management framework for detecting and responding to resource exhaustion attacks and malicious containers running in Kubernetes environments. To achieve this, we define the environment's state, actions, and rewards from the perspective of responding to resource exhaustion attacks using reinforcement learning. It is expected that the proposed methodology will contribute to establishing a robust defense against resource exhaustion attacks in container environments
Automatic post editing is a research field that aims to automatically correct errors in machine translation results. This research is mainly being focus on high resource language pairs, such as English-German. Recent APE studies are mainly adopting transfer learning based research, where pre-training language models, or translation models generated through self-supervised learning methodologies are utilized. While translation based APE model shows superior performance in recent researches, as such researches are conducted on the high resource languages, the same perspective cannot be directly applied to the low resource languages. In this work, we apply two transfer learning strategies to Korean-English APE studies and show that transfer learning with translation model can significantly improves APE performance.
본고에서는 교육내용 성취기준 링크드데이터 프로파일 설계 및 활용에 대해 소개한다. 성취기준은 학생들이 학습의 결과로 반드시 알아야 할 지식, 능력 및 태도를 구체적으로 명시한 것으로서 국가 교육과정의 중요한 요소로 인식되고 있다. 따라서 교수학습지원시스템은 성취기준 링크드데이터 프로파일을 기반으로 교육과정, 수럽계획, 학습자원, 평가 등을 연계할 수 있도록 구현되어야 한다.
퍼블릭 클라우드 시장이 성장하면서 퍼블릭 클라우드에서 호스팅하는 컴퓨팅 자원으로 구축된 거대하고 복잡한 IT 시스템이 점차 많아지고 있다. 이러한 시스템의 증가는 서비스 장애 발생 확률을 높이므로, 장애 관리 및 선제 감지를 위한 퍼블릭 클라우드 자원의 이상 감지 연구에 대한 수요 또한 증가하고 있다. 그러나 연구에 활용할 수 있는 벤치마크 데이터셋이 없다는 점과, 실제 자원에서 추출할 수 있는 데이터는 레이블링이 되어 있지 않은 불균형 데이터라는 점 때문에 관련 연구가 부족한 상황이다. 이러한 문제를 해결하고자 본 논문은 비지도 방식의 표현 학습 기반 딥러닝 모델을 활용한 이상 감지 시스템을 제안한다. 시스템의 이상 감지 성능을 유지하고자 일정 주기마다 다수의 딥러닝 모델을 재학습하고 비교하여 최적의 모델로 업데이트 하는 방식을 고안하였다. 해당 시스템의 평가에는 실제 퍼블릭 클라우드 자원에서 발생한 메트릭 데이터가 활용됐으며, 그 결과 준수한 이상 감지 성능을 보인다는 것을 확인하였다.
습자가 원하는 학습자원을 컴퓨터가 스스로 찾아내서 학습자에게 전달해주고, 더 나아가 새로운 지식까지 추론해서 제공해 줄 수는 없을까? 의미의 웹이라 불리고 있는 시멘틱 웹(Semantic Web)은 의미적으로 연결돼 있는 학습 정보를 컴퓨터가 의미를 이해해서 학습자가 원하는, 학습자 수준에 맞는 정보를 제공해주고 더 나아가 지식까지도 추론해서 학습자에게 가장 적합한 형태로
전달해 줄 수 있는 강력한 메커니즘으로 부각되고 있다. 이에 필자는 살이 있는 e러닝이 되기 위해서는 시멘틱 웹과의 통합이 필요하다고 생각해 2회에 걸쳐 시멘틱 웹과, 시멘틱 웹을 e러닝에 어떻게 적용할 것인지에 대해 진단해 보고자 한다.
Sang-Yeup Jin;Heung-Bae Choi;Myeong-Soo Han;Hyo-tae Lee;Young-Tae Son
Journal of the Korean Society of Marine Environment & Safety
/
v.30
no.2
/
pp.147-156
/
2024
The sustainable management and enhancement of marine resources are becoming increasingly important issues worldwide. This study was conducted in response to these challenges, focusing on the development and performance comparison of fish detection and classification models as part of a deep learning-based technique for assessing the effectiveness of marine resource enhancement projects initiated by the Korea Fisheries Resources Agency. The aim was to select the optimal model by training various sizes of YOLOv8-Seg models on a fish image dataset and comparing each performance metric. The dataset used for model construction consisted of 36,749 images and label files of 12 different species of fish, with data diversity enhanced through the application of augmentation techniques during training. When training and validating five different YOLOv8-Seg models under identical conditions, the medium-sized YOLOv8m-Seg model showed high learning efficiency and excellent detection and classification performance, with the shortest training time of 13 h and 12 min, an of 0.933, and an inference speed of 9.6 ms. Considering the balance between each performance metric, this was deemed the most efficient model for meeting real-time processing requirements. The use of such real-time fish detection and classification models could enable effective surveys of marine resource enhancement projects, suggesting the need for ongoing performance improvements and further research.
Recently, the application of distributed acoustic sensors (DAS), which can replace geophones and seismometers, has significantly increased along with interest in micro-seismic monitoring technique, which is one of the CO2 storage monitoring techniques. A significant amount of temporally and spatially continuous data is recorded in a DAS monitoring system, thereby necessitating fast and accurate data processing techniques. Because event detection and seismic phase picking are the most basic data processing techniques, they should be performed on all data. In this study, a machine learning-based P, S wave phase picking algorithm was developed to compensate for the limitations of conventional phase picking algorithms, and it was modified using a transfer learning technique for the application of DAS data consisting of a single component with a low signal-to-noise ratio. Our model was constructed by modifying the convolution-based EQTransformer, which performs well in phase picking, to the ResUNet structure. Not only the global earthquake dataset, STEAD but also the augmented dataset was used as training datasets to enhance the prediction performance on the unseen characteristics of the target dataset. The performance of the developed algorithm was verified using K-net and KiK-net data with characteristics different from the training data. Additionally, after modifying the trained model to suit DAS data using the transfer learning technique, the performance was verified by applying it to the DAS field data measured in the Pohang Janggi basin.
Journal of the Korean Society for Library and Information Science
/
v.40
no.1
/
pp.217-239
/
2006
21st century is a knowledge and information society. Keeping pace with this global environment change. people demand various roles from a library First, they demand to play a role of an 'Information Connector' rather than a traditional role of a 'Book Container'. Second, they demand to be the place of the social integration for a solution to the information and learning gap and the place for a life-long learning for HRD(Human Resources Development) by the community unit. In addition, not only introducing a system of 'Deputy Prime Minister and Minister of Education & HRD' for national HRD and 'Five-Day Week' but the advent of 'an Aging Society' demand a change of a library. This study researches roles of a library inseparably related to such new paradigms in the life-long learning society as the knowledge. information, five-day week. aging and HRD, and shows the right direction of a library to pursue in the future.
웹 기술 기반의 컨텐츠 개발 및 운영으로 다른 환경에서의 컨텐츠 활용을 토대로 교육자원의 정보들을 통합 운영할 수 있는 관리 중심체인 e-learning 시스템의 중요성과 필요성이 대두되고 있으며, 교육용 어플리케이션은 현재 표준화되지 않은 개발 프로세스를 기반하여 개발하고 있는 실정이다. 따라서, 교육 컨텐츠의 재사용을 높이기 위해 국제적 학습 표준인 SCORM (Sharable Content Object Reference Model)을 기반으로 하나의 플랫폼에 있어서 시스템 개발 중 다른 플랫폼으로의 재사용이 가능한 핵심자산을 이용하여 조립, 생산할 수 있는 방안으로 체계적인 교육자원을 개발하고 지원하기 위한 교수-학습지원 시스템 개발에 초점을 둔 연구가 요구된다. 따라서, 본 논문에서의 교육적 도메인으로 접근하여 MDA(Model Driven Architecture)상의 교수-학습지원 시스템을 정의한다. 또한 학습컨텐츠 표준 메타데이터를 이용하여 컨텐츠저장소에 관한 분석 및 설계를 하고 MDA 자동화 툴을 이용한 핵심자산을 통해 실제 교수자가 필요로하는 컨텐츠를 제공할 수 있는 교수-학습지원 시스템을 개발하고자 한다.
Journal of the Korean Society for Library and Information Science
/
v.38
no.4
/
pp.85-104
/
2004
This study is supposed to the way to add and enlarge the elements related to educational domain in metadata of school library information system (DLS) by using the concept of learning object which the education information service agencies have adapted. This study is to propose the methods which can be accessed according to the units of learning content in order that they can be applied to the teaching and learning situations, and describe and index the total traits of interior data elements included in the information resources. Thus, the metadata of the existing DLS through the additional elements : , , and was made to access the information resources according to the teaching and learning situations and to accept the concept of interior learning units by means of the element.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.