본 논문에서는 유비쿼터스 환경에서 학습자 맞춤형 학습을 지원하기 위한 사용자 모델 확장의 프레임워크를 설계 및 제시하였다. 이를 위해 기존의 모델인 도메인 모델, 사용자 모델, 적용 모델, 인터액션 모델을 LMS(Learning Management System)와 LCMS(Learning Contents Management System)에 연동하였다. 사용자 모델의 확장인 학습자 정보 관리 프로세스를 LMS와 적응적 시스템 사이에 두었으며, 이를 u-러닝에서 사용할 수 있도록 u-LMS와 연결하였다. u-LMS와 u-LCMS는 학습자의 접속 및 요구에 따라 적절한 변환을 통해 이동형 기기에 제공할 수 있도록 하였다.
프로그래밍 교육은 프로그래밍에 필요한 지식 교육부분과 문제해결능력과 연관된 프로그래밍 전략을 교육하는 부분이 함께 필요하다. 프로그램 작성 기술을 교육하는 과정은 단순한 지식 습득과정이 아니므로 수업과정에서 학습자 스스로 문제해결능력을 배양할 수 있는 유도과정이 필요하다. 이러한 특성의 프로그래밍 수업의 대표적인 수업방식은 실습방식으로, 실제 수업에서 학습자들의 서로 다른 수준을 고려하면서 실습수업을 효과적으로 운영하기에는 수업시간에 대한 제약이 많이 발생한다. 본 연구에서는 프로그래밍 교육에서 사전 프로그래밍 과제를 활용하여 주어진 학점과 시간 안에서 실습 중심의 학습 효과를 높일 수 있는 교수 학습 모델을 제시한다. 이를 통해 프로그래밍 언어 교육 과정에서 발생하는 제한된 실습수업 시간으로 인해 학습자 스스로가 문제해결능력을 배양할 수 있도록 유도하는 수업을 실시하는데 발생하는 어려움을 해결하여, 학습자가 문제해결능력을 향상시키고 좋은 프로그램 작성 기준에 적합한 프로그램 개발 능력을 배양하는 결과를 얻을 수 있었다.
최첨단 정보통신 기술의 급속한 발전과 구성주의 학습 이론을 기반으로 등장한 원격 교육에서는 학습자가 자신의 학습 과정을 주관함으로써 자신에게 필요한 지식과 기술을 습득하는 자기주도적 학습이 이루어진다. 그러나 웹 기반 원격 교육이나 구성주의에서 학습자 중심적, 주도적 학습을 강조 했을 때 그것이 곧 교사로부터의 해방이나 자유방임적 교육을 의미하는 것은 아니다. 따라서 본 논문에서는 교사 에이전트를 활용하여 학습자를 다양한 수준별로 지도할 수 있는 원격 교육 시스템 모델을 제안하고자 한다. 제안하는 모델에서 교사 에이전트는 학습자 정보를 바탕으로 학습자 개개인의 학습 수준에 맞는 학습 모델을 생성하고 평가에 의해 학업 성취 정도를 파악하여 다음 단계로의 학습 진행 여부를 제어한다. 이를 통하여 웹기반 원격 교육이 제공하는 학습 자원이 아무 목적없이 정보 검색 자체로 활용되는 문제점을 해결하고 진정한 학습자 중심의 교육을 실현할 수 있는 기반을 마련할 수 있다.
생성형 인공지능은 학습의 기준을 파악하기 어려운 모델이다. 그 중 DCGAN을 분석하여 판별자를 통해 생성자의 학습 기준을 판단할 수 있는 하나의 방법을 제안하고자 한다. 그 과정에서 XAI 기법인 Grad-CAM을 활용하여 학습 시에 모델이 중요시하는 부분을 분석하여 적합한 학습과 학습에 적합하지 않은 데이터를 분석하는 방법을 소개하고자 한다.
상호작용적으로 학습의 도움을 주는 교육용 게임에서 변화하는 학습자의 지식과 학습목표를 파악하여 처리해줄 필요가 있다. 이러한 과정은 분석적 평가와 학습계획이라는 절차를 요구하게 되는데 본질적으로 불확실성이 내포되어 있다. 이 논문에서는 교육용 게임에서 학습자와 상호작용을 통하여 수집되는 정보를 적응적으로 분석하여 학습계획을 실시간으로 수립할 수 있는 베이지안 학습자 모델을 제시하고자 한다.
본 논문은 사용자 수준에 적합한 맞춤형 학습코스를 추천하여 학습효과를 향상시킬 수 있는 추천모델을 개발하고, 효과분석을 위한 방안을 제시한다. 학습자 개개인의 학습수준이나 학습내용 등에 따라 적합한 학습주제를 선정하여 제공하는 것은 중요하나, 일반적인 추천은 전문가 그룹을 활용한 사람중심의 추천으로 시간이 오래 걸리는 등 자원의 비효율적 한계점[1]을 가지고 있다. 이를 극복하기 위해, TF-IDF를 이용해 단어별 가중치를 계산하여 고빈도 단어를 추출하여 벡터 공간에 배치시키고, Cosine Similarity 기법을 이용해 벡터간의 유사도를 측정하였다. 학습자 프로파일을 분석하고, 학습스킬간의 연관성을 고려하여 맞춤형 학습코스를 추천하기 위해, 워드 임베딩 기법을 적용하였고, 이를 위해 오픈소스 Gensim[2]을 이용하였다. 맞춤형 학습코스 추천 모델의 효과를 분석하기 위한 실험을 설계하고 평가 문항지를 개발하였다.
유역 특히 상습침수지구의 통합관리는 유역이라는 한정된 범위 내에서 물에 영향을 미치거나 물에 의하여 영향을 받는 모든 인간 활동과 자연현상을 통합적으로 고려하는 것이다. 이러한 관점에서 유역관리는 유역 차원에서 물을 경제적이고 공평하게 관리하고 분배하여 수자원에 대한 장기적이고 지속가능한 해결방안을 마련하는 것이다. 여기에는 정부, 시민사회 및 기업 행위자가 사회경제적 개발목표와 정책형성, 집행계획을 수립하는 것으로부터 시작된다. 유역관리를 위한 의사결정들은 행위자들과의 영향으로 수정되며, 이런 과정에서 토지와 수자원에서 분쟁이 발생하며, 수자원 관리자는 자연현상, 물 사용, 재정적, 인적자원 및 외부적인 요인으로 인해 목적을 달성하는데 부합하지 않을 수도 있다. 효과적인 유역관리를 위해서는 제약조건하에서 수자원 관리자가 의사결정에 정보를 주고 주요 행위자들과 협력을 통해서 이루어 질 수 있다. 본 논문에서는 유역관리를 위한 의사결정을 행위자기반모형(Agent based Model, ABM)으로 이해하고자 하며, ABM은 유역관리의 이해당사자간의 정책과정을 도출하고 다양한 유역관리 대안을 평가하고 유역관리의 영향을 설명하는 모델이다. 본 모형은 관측자료를 통해 상향식 접근법으로 가능한 많은 세부사항을 모의할 수 있다. 분석과정은 자료의 수집, 모델 확립, 모델의 개발, 통계자료 수집 및 모델의 결과와 실제 시스템의 보충된 관측자료를 비교하는 검증 순으로 진행되며, 본 모델에서의 행위자는 과거의 행동으로부터 주위 환경의 반응하는 패턴을 확인하고 개발하며, 이러한 패턴은 정책들을 구별하기 위해서 이용되며, 이러한 과정에서 강화학습이 이루어진다. 이를 통해 행위자의 익숙한 방식의 합리적인 행동과 정책들의 상관관계를 평가할 수 있으며, 강화학습을 통해 실제적인 통계적인 모델이 가능하다.
유역관리는 유역이라는 한정된 범위 내에서 물에 영향을 미치거나 물에 의하여 영향을 받는 모든 인간 활동과 자연현상을 통합적으로 고려하는 것이다. 이러한 관점에서 유역관리는 유역 차원에서 물을 경제적이고 공평하게 관리하고 분배하여 수자원에 대한 장기적이고 지속가능한 해결 방안을 마련하는 것이다. 여기에는 정부, 시민사회 및 기업 행위자가 사회경제적 개발목표와 정책 형성, 집행계획을 수립하는 것으로부터 시작된다. 유역관리를 위한 의사결정들은 행위자들과의 영향으로 수정되며, 이런 과정에서 토지와 수자원에서 분쟁이 발생하며, 수자원 관리자는 자연현상, 물 사용, 재정적, 인적자원 및 외부적인 요인으로 인해 목적을 달성하는데 부합하지 않을 수도 있다. 효과적인 유역관리를 위해서는 제약조건 하에서 수자원 관리자가 의사결정에 정보를 주고 주요 행위자들과 협력을 통해서 이루어 질 수 있다. 본 논문에서는 유역관리를 위한 의사결정을 행위자기반모형(Agent based Model, ABM)으로 이해하고자 하며, ABM은 유역관리의 이해당사자간의 정책과정을 도출하고 다양한 유역관리 대안을 평가하고 유역관리의 영향을 설명하는 모델이다. 본 모형은 관측자료를 통해 상향식 접근법으로 가능한 많은 세부사항을 모의할 수 있다. 분석과정은 자료의 수집, 모델 확립, 모델의 개발, 통계 자료 수집 및 모델의 결과와 실제 시스템의 보충된 관측자료를 비교하는 검증 순으로 진행되며, 본 모델에서의 행위자는 과거의 행동으로부터 주위 환경의 반응하는 패턴을 확인하고 개발하며, 이러한 패턴은 정책들을 구별하기 위해서 이용되며, 이러한 과정에서 강화학습이 이루어진다. 이를 통해 행위자의 익숙한 방식의 합리적인 행동과 정책들의 상관관계를 평가할 수 있으며, 강화학습을 통해 실제적인 통계적인 모델이 가능할 것이다.
본연구는 웹 상에서 원격 협력 학습을 위한 수준별 협력 학습자 진단 및 스케줄링 에이전트의 설계와 구현에 관한 연구이다. 원격 협력 학습은 동일한 학습내용에 흥미를 갖는 아동이 동시에 학습할 수 있는 환경이 필요하며 학습자의 지식 또한 비슷한 수준이어야 효과적인 협력학습을 할 수 있다. 분산 환경의 이질적인 학습자를 모으기 위해서는 좀 더 자율적이고 지능적인 시스템이 필요하며 학습자에 대한 지식을 표현하는 학습자 모델이 요구된다. 이를 위해 에이전트 시스템이 적절하게 사용될수 있으며 학습자의 수준을 판단하기 위한 진단 에이전트와 협력학습이 가능한 여러명의 학습자들을 알맞은 시간과 서버에 연결하는 스케줄링 에이전트를 웹 기반 지능형 교수 시스템에 접목하였다. 학습자 수준을 진단하는 진단 에이전트는 확신도를 높이기 위해 3-모수 로지스틱 확신공식과 시간 가중치 확신인자 공식을 적용하여 신뢰도를 높였다 또한 협력학습의 스케줄링을 위해 다양한 제약조건들의 최적해를 구하기 위해 제약 만족 문제(CSP)로 스케줄링 에이전트를 모델링하였다 본 연구에서 설계 구현한 협력학습자 진단 및 스케줄링 에이전트의 효율성을 살펴보기 위해 여러명의 학습자를 대상으로 실험하였다. 실험을 통해 각 학습자의 지식 수준 진단과 다수의 학습자가 적절한 협력학습을 하기 위한 스케줄링이 매우 효율적으로 이루어짐을 볼 수 있었다.
본 논문에서는 학습자-튜터간 상호작용 모델을 웹 기반 가상교육시스템에 구현하여 그 효과를 분석하였다. 또한 웹기반 가상교육에서 나타나는 상호작용의 문제점을 해결하기 위한 방안으로 새로운 튜터 모델을 제안하였다. 선행연구를 바탕으로 튜터의 역할을 도출해내고, 이를 기준으로 웹에서 구현이 가능한 학습자-튜터간 상호작용 요소를 모형화하여 모델을 제안하였다. 제안한 모델의 효과를 검증하기 위하여 기존의 웹 기반 가상교육시스템을 기반으로 튜터 모델을 적용한 가상교육시스템을 구현하였다. 실험 결과에서는 본 논문에서 제안한 튜터 모델이 학습자의 학업성취도와 상호작용성을 항상시키는데 효과적임을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.