• Title/Summary/Keyword: 학습영상

Search Result 2,585, Processing Time 0.03 seconds

Optimized Normalization for Unsupervised Learning-based Image Denoising (비지도 학습 기반 영상 노이즈 제거 기술을 위한 정규화 기법의 최적화)

  • Lee, Kanggeun;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.45-54
    • /
    • 2021
  • Recently, deep learning-based denoising approaches have been actively studied. In particular, with the advances of blind denoising techniques, it become possible to train a deep learning-based denoising model only with noisy images in an image domain where it is impossible to obtain a clean image. We no longer require pairs of a clean image and a noisy image to obtain a restored clean image from the observation. However, it is difficult to recover the target using a deep learning-based denoising model trained by only noisy images if the distribution of the noisy image is far from the distribution of the clean image. To address this limitation, unpaired image denoising approaches have recently been studied that can learn the denoising model from unpaired data of the noisy image and the clean image. ISCL showed comparable performance close to that of supervised learning-based models based on pairs of clean and noisy images. In this study, we propose suitable normalization techniques for each purpose of architectures (e.g., generator, discriminator, and extractor) of ISCL. We demonstrate that the proposed method outperforms state-of-the-art unpaired image denoising approaches including ISCL.

Development of Convolutional Network-based Denoising Technique using Deep Reinforcement Learning in Computed Tomography (심층강화학습을 이용한 Convolutional Network 기반 전산화단층영상 잡음 저감 기술 개발)

  • Cho, Jenonghyo;Yim, Dobin;Nam, Kibok;Lee, Dahye;Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.991-1001
    • /
    • 2020
  • Supervised deep learning technologies for improving the image quality of computed tomography (CT) need a lot of training data. When input images have different characteristics with training images, the technologies cause structural distortion in output images. In this study, an imaging model based on the deep reinforcement learning (DRL) was developed for overcoming the drawbacks of the supervised deep learning technologies and reducing noise in CT images. The DRL model was consisted of shared, value and policy networks, and the networks included convolutional layers, rectified linear unit (ReLU), dilation factors and gate rotation unit (GRU) in order to extract noise features from CT images and improve the performance of the DRL model. Also, the quality of the CT images obtained by using the DRL model was compared to that obtained by using the supervised deep learning model. The results showed that the image accuracy for the DRL model was higher than that for the supervised deep learning model, and the image noise for the DRL model was smaller than that for the supervised deep learning model. Also, the DRL model reduced the noise of the CT images, which had different characteristics with training images. Therefore, the DRL model is able to reduce image noise as well as maintain the structural information of CT images.

Face Super Resolution using Self-Supervised Learning (자기 지도 학습을 통한 고해상도 얼굴 영상 복원)

  • Jo, Byung-Ho;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.724-726
    • /
    • 2020
  • 본 논문에서는 GAN 과 자기 지도 학습(self-supervised learning)을 통해 입력 얼굴 영상의 공간 해상도를 4 배 증가시키는 기법을 제안한다. 제안하는 기법은 변형된 StarGAN v2 구조의 생성자와 구분자를 사용하여 저해상도의 입력 영상만을 가지고 학습 과정을 거쳐 고해상도 영상을 복원하도록 자기 지도 학습을 수행한다. 제안하는 기법은 복원된 영상과 고해상도 영상 간의 손실을 줄이는 지도 학습이 가지고 있는 단점을 극복하고 입력 영상만을 가지고 영상 내부에 존재하는 특징을 학습하여 얼굴 영상에 대한 고해상도 영상을 복원한다. 제안하는 기법과 Bicubic 보간법과의 비교를 통해 우수성을 검증한다.

  • PDF

Vector Quantization Compression of the Still Image by Multilayer Perceptron (다층 신경회로망 학습에 의한 정지 영상의 벡터)

  • Lee, Sang-Chan;Choe, Tae-Wan;Kim, Ji-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.390-398
    • /
    • 1996
  • In this paper, a new image compression algorithm using the generality of the multilaryer perceptron is proposed. Proposed algorithm classifies image into some classes, and trains them through the multilayer perceptron. Multilayer perceptron which trained by the above method can do compression and reconstruction of the nontrained image by the generality. Also, it reduces memory size of the side of receiver and quantization error. For the experiment, we divide Lena image into 16 classes and train them through one multilayer perceptron. The experimental results show that we can get excellent reconstruction images by doing compression and reconstruction for Lena image, Dollar image and Statue image.

  • PDF

Image denoising using Generative Adversarial Network (생성적 적대 신경망을 이용한 영상 잡음 제거)

  • Park, Gu Yong;Kim, Yoonsik;cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.213-216
    • /
    • 2019
  • 영상 잡음 제거 알고리즘은 잡음으로 오염된 영상으로부터 잡음이 제거된 깨끗한 영상을 추정하여 복원하는 연구이다. 기존의 모델 기반 방법의 영상 잡음 제거 알고리즘은 영상을 복원하는 과정에서 최적화 문제를 풀어야 한다는 단점과 매개변수를 직접 선택을 해주어야 한다는 단점을 가진다. 본 논문에서는 딥러닝을 이용한 학습기반 방법의 영상 잡음 제거 연구를 소개한다. 먼저, 신경망의 구축을 위하여 신경망의 구성 요소는 Instance Normalization 과 컨볼루션 신경망을 이용한 모델을 제안하였고, 여러 연구 분야에서 좋은 성능을 보이는 U-Net 구조를 전체적인 구조로 차용하였다. 신경망의 학습을 위하여 DnCNN 에서 제안한 잡음을 학습하는 잔여 학습 기법을 채택하였고, 기존의 영상 잡음 제거 알고리즘의 단점인 결과 영상이 흐릿해지는 현상을 보완하기 위하여 생성적 적대 신경망 학습 방법을 적용하였다. 본 논문에서 제안한 신경망을 이용한 잡음 제거 영상의 결과가 기존의 연구 방법들 보다 인지적인 측면에서 좋은 결과를 보임을 확인하였다.

  • PDF

The Proposed Self-Generation Supervised Learning Algorithm for Image Recognition (영상 인식을 위한 제안된 자가 생성 지도 학습 알고리즘)

  • 이혜현;류재욱;조아현;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.226-230
    • /
    • 2001
  • 오류 역전파 알고리즘을 영상 인식에 적용한 경우 은닉층의 노드 수를 경험적으로 설정하여야 하는 문제점이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘의 은닉층 노드 수를 동적으로 설정하는 문제를 해결하기 위해 ART1을 수정하여 지도 학습 방법과 결합한 자가 생성 지도 학습 알고리즘을 제안하였다. 제안된 학습 알고리즘의 성능을 평가하기 위해 콘테이너 영상의 문자 및 숫자 인식 문제에 적용하여 기존의 오류 역전파 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 자가 생성 지도 학습알고리즘이 기존의 오류 역전과 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 영상 인식에 적용할 수 있는 가능성도 제시하였다.

  • PDF

Image Restoration using Enhanced Fuzzy Associative Memory (개선된 퍼지 연상 메모리를 이용한 영상 복원)

  • 조서영;민지희;김광백
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.133-135
    • /
    • 2004
  • 신경 회로망에서 연상 메모리(Associative Memory)는 주어진 자료에 대해 정보를 저장하고 복원하는 알고리즘이다. 본 논문에서는 학습된 영상의 정확한 분류와 왜곡된 영상의 복원 및 분류를 위해 기존의 퍼지 연상 메모리 알고리즘을 개선하였다. 기존의 퍼지 연상 메모리는 학습 데이터와 학습 원본과 같은 입력에 대해 우수한 복원 성능을 보이나 학습 데이터의 수가 증가할수록 그리고 왜곡된 입력에 대해 정확히 출력할 수 없고 복원 성능도 저하된다. 따라서 본 논문에서는 기존의 퍼지 연상 메모리 알고리즘을 개선하여 왜곡된 입력에 대해서도 원본 학습 데이터를 정확히 출력하고 복원하는 개선된 퍼지 연상 메모리 알고리즘을 제안하였다.

  • PDF

A Study on Feature Extraction Performance of Naive Convolutional Auto Encoder to Natural Images (자연 영상에 대한 Naive Convolutional Auto Encoder의 특징 추출 성능에 관한 연구)

  • Lee, Sung Ju;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1286-1289
    • /
    • 2022
  • 최근 영상 군집화 분야는 딥러닝 모델에게 Self-supervision을 주거나 unlabeled 영상에 유사-레이블을 주는 방식으로 연구되고 있다. 또한, 고차원 컬러 자연 영상에 대해 잘 압축된 특징 벡터를 추출하는 것은 군집화에 있어 중요한 기준이 된다. 본 연구에서는 자연 영상에 대한 Convolutional Auto Encoder의 특징 추출 성능을 평가하기 위해 설계한 실험 방법을 소개한다. 특히 모델의 특징 추출 능력을 순수하게 확인하기 위하여 Self-supervision 및 유사-레이블을 제공하지 않은 채 Naive한 모델의 결과를 분석할 것이다. 먼저 실험을 위해 설계된 4가지 비지도학습 모델의 복원 결과를 통해 모델별 학습 정도를 확인한다. 그리고 비지도 모델이 다량의 unlabeled 영상으로 학습되어도 더 적은 labeled 데이터로 학습된 지도학습 모델의 특징 추출 성능에 못 미침을 특징 벡터의 군집화 및 분류 실험 결과를 통해 확인한다. 또한, 지도학습 모델에 데이터셋 간 교차 학습을 수행하여 출력된 특징 벡터의 군집화 및 분류 성능도 확인한다.

  • PDF

Learning Data Configuration by Edge Detection (경계선 검출에 의한 학습 데이터 구성)

  • Jae-Hyun Cho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.413-414
    • /
    • 2024
  • 영상 인식을 위한 학습 데이터 구성 단계에서 에지는 물체의 크기, 방향 등의 정보를 포함하고 있어 영상의 특징으로 사용한다. 본 논문에서는 얼굴 인식을 위하여 소벨 마스크를 사용하여 원영상과 압축영상 그리고 에지영상간의 학습에 따른 인식 정도를 파악하고자 한다. 실험결과, 원영상 그대로 인식하는 것보다 에지 영상에 의한 학습 속도에 차이가 있음을 알 수 있었다.

  • PDF

Efficient Reconstruction of 3D Human Body Pose Using Spatio-Temporal Features (시-공간 특징을 이용한 효율적인 3차원 인체 자세 재구성)

  • Yang Hee-Deok;Ahmad Mohiuddin;Lee Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.892-894
    • /
    • 2005
  • 본 논문에서는 스테레오 영상에서 깊이 정보를 추출하여 사람의 자세를 학습된 2차원 깊이 영상들의 선형 결함으로 표현하여 3차원 인체 모델을 재구성하는 방법을 제안한다. 한 장의 2차원 깊이 영상으로 최소 제곱법을 이용하여 프로토타입 깊이 영상의 선형 결합으로 표현되는 최적의 계수를 찾을 수 있다. 입력된 깊이 영상의 3차원 인체 모델은 프로토타입 깊이 영상에서 예측된 계수를 적용하여 생성한다. 학습 단계에서는 데이터를 계층적으로 나누어 모델을 생성한다. 또한, 재구성 단계에서는 실루엣 영상과 깊이 영상으로부터 계층적으로 나누어진 학습 데이터를 이용하여 3차원 인체 자세를 재구성한다. 학습 및 재구성의 마지막 단계에서는 실루엣 영상 대신 깊이 영상을 이용하여 3차원 인체 모델을 재구성한다. 한 장의 실루엣 영상을 이용하면 영상의 노이즈에 민감하기 때문에 재구성 단계의 상위 레벨에서는 실루엣 영상의 누적 영상을 이용한다. 실험 결과는 제안된 방법이 효율적으로 3차원 인체 자세를 재구성함을 보여준다.

  • PDF