• 제목/요약/키워드: 학습열의

검색결과 691건 처리시간 0.038초

순환인공신경망(RNN)을 이용한 대도시 도심부 교통혼잡 예측 (Traffic Congestion Estimation by Adopting Recurrent Neural Network)

  • 정희진;윤진수;배상훈
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.67-78
    • /
    • 2017
  • 교통혼잡비용은 매해 증가하며, 교통혼잡비용의 63.8%에 해당되는 도심부 교통혼잡에 대한 대책 마련이 시급한 상태이다. 최근 빅데이터, 인공지능 등 4차 산업혁명을 선도하는 기술들의 발전으로 교통부문의 정보화에도 많은 변화가 초래되고 있다. 이러한 신개념 기술을 활용하여 소통상황 예측정보를 제공함으로써 교통혼잡비용을 저감할 수 있을 것으로 기대된다. 이에 본 연구에서는 순환 인공 신경망(RNN)을 활용하여 반복 및 비반복 정체 예측 모형을 개발하고자 하였다. 제안 모형은 실시간 소통정보, 이력정보, 유고상황정보 등을 활용하여 현재를 기점으로 15분 간격의 1시간 이후 소통 상황을 예측하는 모형이다. 33개 링크로 구성된 서울시 논현로에 대해 2개의 은닉층으로 구성된 RNN 모형을 구축하였다. 총 30개 모형을 계량활용변화역전파 알고리즘으로 학습하여, 이 중 평균오차제곱이 0.0834인 모형을 최적 모형으로 선정하였다. 모형 검증 결과 25개 링크에 대해 유의성 높은 예측을 하였다. 모형의 예측력을 열지도를 통해 검토한 결과 반복 정체뿐 아니라 비반복 정체까지 예측할 수 있는 것을 확인할 수 있었다. 따라서 실제 도로 상에서의 교통혼잡 예측을 위한 모형으로 활용할 수 있을 것이라 기대된다.

음성특징의 거리에 기반한 한국어 발음의 시각화 (Visualization of Korean Speech Based on the Distance of Acoustic Features)

  • 복거철
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.197-205
    • /
    • 2020
  • 한국어는 자음과 모음과 같은 음소 단위의 발음은 고정되어 있고 표기에 대응하는 발음은 변하지 않기 때문에 외국인 학습자가 쉽게 접근할 수 있다. 그러나 단어와 어구, 문장을 말할 때는 음절과 음절의 경계에서 소리의 변동이 다양하고 복잡하며 표기와 발음이 일치하지 않기 때문에 외국어로서의 한국어 표준 발음 학습은 어려운 면이 있다. 그러나 영어 같은 다른 언어와 달리 한국어의 표기와 발음의 관계는 논리적인 원리에 따라 예외 없이 규칙화 할 수 있는 장점이 있으므로 발음오류에 대해 체계적인 분석이 가능한 것으로 여겨진다. 본 연구에서는 오류 발음과 표준 발음의 차이를 컴퓨터 화면상의 상대적 거리로 표현하여 시각화하는 모델을 제시한다. 기존 연구에서는 발음의 특징을 단지 컬러 또는 3차원 그래픽으로 표현하거나 입과 구강의 변화하는 형태를 애니메이션으로 보여 주는 방식에 머물러 있으며 추출하는 음성의 특징도 구간의 평균과 같은 점 데이터를 이용하는데 그치고 있다. 본 연구에서는 시계열로 표현되는 음성데이터의 특성 및 구조를 요약하거나 변형하지 않고 직접 이용하는 방법을 제시한다. 이를 위해서 딥러닝 기법을 토대로 자기조직화 알고리즘과 variational autoencoder(VAE) 모델 및 마코브 확률모델을 결합한 확률적 SOM-VAE 기법을 사용하여 클러스터링 성능을 향상시켰다.

초등학교 「사회」 교과서 탐구 과제에 포함된 사서교사의 교육적 역할 분석 - 초등학교 4·5·6학년 2학기 사회교과를 중심으로 - (An Analysis of Teacher Librarians' Educational Role Embedded in Inquiry Tasks of Elementary Social Studies Textbooks: based on the 4th·5th·6th Grade in the Second Term)

  • 유종열;송기호
    • 한국문헌정보학회지
    • /
    • 제51권1호
    • /
    • pp.29-47
    • /
    • 2017
  • 본 연구의 목적은 초등학교 사회 교과서에 포함된 탐구 과제를 정보활동 중심의 도서관활용수업 모형과 비교 분석하고, 사회 교과 학습에서 사서교사가 제공할 수 있는 교육적 역할을 도출하는 것이다. 이를 위하여 국정교과서로 개발되어 활용 중인 초등학교 4 5 6학년 2학기 사회 교과서를 분석하였다. 분석 결과 4 5학년은 개별적으로 교과서에 수록된 삽화, 사진, 텍스트를 비교 분석하여 말로 표현하고, 6학년은 자신의 경험이나 생각 또는 다른 자료에서 찾은 정보를 활용해서 과제를 해결하고 말로 표현하도록 탐구 과제가 구성되어 있는 것으로 나타났다. 따라서 사서교사는 4 5학년에게는 비교, 대조, 조합, 원인과 결과 구분, 사실과 의견 구분 그리고 결론의 예측과 추론 등의 정보활용기술을 지도하는데 참여할 수 있을 것으로 보인다. 6학년에게는 교과교사와의 협력을 바탕으로 장기간에 걸쳐서 과제의 특성에 따른 해결 계획을 수립하고, 자료 수집, 활용, 결과물 완성 및 평가에 이르는 전반적인 정보활용과정을 지도하는데 참여할 수 있다.

딥러닝 기법을 활용한 컨테이너선 운임 예측 모델 (Estimation Model for Freight of Container Ships using Deep Learning Method)

  • 김동균;최정석
    • 해양환경안전학회지
    • /
    • 제27권5호
    • /
    • pp.574-583
    • /
    • 2021
  • 해운 시황을 예측하는 것은 중요한 문제이다. 투자 방식의 결정, 선대 편성 방법, 운임 등을 결정하기 위한 판단 근거가 되며 이는 기업의 이익과 생존에 큰 영향을 미치기 때문이다. 이를 위해 본 연구에서는 기계학습 모델인 장단기 메모리 및 간소화된 장단기 메모리 구조의 Gated Recurrent Units를 활용하여 컨테이너선의 해상운임 예측 모델을 제안한다. 운임 예측 대상은 중국 컨테이너 운임지수(CCFI)이며, 2003년 3월부터 2020년 5월까지의 CCFI 데이터를 학습에 사용하였다. 각 모델에 따라 2020년 6월 이후의 CCFI를 예측한 후 실제 CCFI와 비교, 분석하였다. 실험 모델은 하이퍼 파라메터의 설정에 따라 총 6개의 모델을 설계하였다. 또한 전통적인 분석 방법과의 성능을 비교하기 위해 ARIMA 모델도 실험에 추가하였다. 최적 모델은 두 가지 방법에 따라 선정하였다. 첫 번째 방법으로 각 모델을 10회 반복 실험하여 얻은 RMSE의 평균값이 가장 작은 모델을 선정하는 것이다. 두 번째 방법으로는 모든 실험에서 가장 낮은 RMSE를 기록한 모델을 선정하는 것이다. 실험 결과 전통적 시계열 예측모델인 ARIMA 모델과 비교하여 딥러닝 모델의 정확도를 입증하였으며, 정확한 예측모델을 통해 운임 변동의 위험관리 능력을 제고시키는데 기여했다. 반면 코로나19와 같은 외부 효과에 따른 운임의 급격한 변화상황이 발생한 경우, 예측모델의 정확도가 감소하는 한계점을 나타냈다. 제안된 모델 중 GRU1 모델이 두 가지 평가 방법 모두에서 가장 낮은 RMSE(69.55, 49.35)를 기록하며 최적 모델로 선정되었다.

IoT 스트리밍 센서 데이터에 기반한 실시간 PM10 농도 예측 LSTM 모델 (Real-time PM10 Concentration Prediction LSTM Model based on IoT Streaming Sensor data)

  • 김삼근;오택일
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.310-318
    • /
    • 2018
  • 최근 사물인터넷(IoT)의 등장으로 인터넷에 연결된 다양한 기기들에 의해 대규모의 데이터가 생성됨에 따라 빅데이터 분석의 중요성이 증가하고 있다. 특히 실시간으로 생성되는 대규모의 IoT 스트리밍 센서 데이터를 분석하여 새로운 의미 있는 미래 예측을 통해 다양한 서비스를 제공하는 것이 필요하게 되었다. 본 논문은 AWS를 활용하여 IoT 센서로부터 생성되는 스트리밍 데이터에 기반하여 실시간 실내 PM10 농도 예측 LSTM 모델을 제안한다. 또한 제안 모델에 따른 실시간 실내 PM10 농도 예측 서비스를 구축한다. 논문에 사용된 데이터는 PM10 IoT 센서로부터 24시간 동안 수집된 스트리밍 데이터이다. 이를 LSTM의 입력 데이터로 사용하기 위해 PM10 시계열 데이터로부터 30개의 연속된 값으로 이루어진 시퀀스 데이터로 변환한다. LSTM 모델은 바로 인접한 공간으로 이동해 가는 슬라이딩 윈도우 프로세스를 통하여 학습한다. 또한 모델의 성능 개선을 위해 24시간마다 수집한 스트리밍 데이터에 대해 점진적 학습 방법을 적용한다. 제안한 LSTM 모델의 성능을 평가하기 위해 선형회귀 모델 및 순환형 신경망(RNN) 모델과 비교한다. 실험 결과는 제안한 LSTM 예측 모델이 선형 회귀보다 700%, RNN 모델보다는 140% 성능 개선이 있음을 보여주었다.

Seq2Seq 모델 기반의 로봇팔 고장예지 기술 (Seq2Seq model-based Prognostics and Health Management of Robot Arm)

  • 이영현;김경준;이승익;김동주
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.242-250
    • /
    • 2019
  • 본 논문에서는 인공신경망(Artificial Neural Network) 모델 중, 시계열 데이터의 변환을 위한 모델인 Seq2Seq(Sequence to Sequence) 모델을 이용한 산업용 로봇 고장 예지 기술에 대하여 제안한다. 제안 방법은 고장 예지를 위한 추가적인 센서의 부착 없이 로봇 자체적으로 측정 가능한 관절 별 전류와 각도 값을 데이터로 사용하였고, 측정된 데이터를 모델이 학습할 수 있도록 전처리한 후, Seq2Seq 모델을 통해 전류를 각도로 변환하도록 지도 학습 하였다. 고장 진단을 위한 이상 정도(Abnormal degree)는 예측 각도와 실제 각도 간의 단위시간 동안의 RMSE(Root Mean Squared Error)를 사용하였다. 제안 방법의 성능평가는 로봇의 정상 및 결함 조건을 달리한 상태에서 측정한 테스트 데이터를 이용하여 수행되었고 이상 정도가 임계값 넘어가면 고장으로 분류하게 하여, 실험으로부터 96.67% 고장 진단 정확도를 보였다. 제안 방법은 별도의 추가적인 센서 없이 고장 예지 수행이 가능하다는 장점이 있으며, 로봇에 대한 깊은 전문지식을 요구하지 않으면서 수행할 수 있는 방법으로 높은 진단 성능과 효용성을 실험으로부터 확인하였다.

케이프선 시장 운임의 결정요인 및 운임예측 모형 분석 (An Analysis on Determinants of the Capesize Freight Rate and Forecasting Models)

  • 임상섭;윤희성
    • 한국항해항만학회지
    • /
    • 제42권6호
    • /
    • pp.539-545
    • /
    • 2018
  • 운임시장의 심한 변동성과 시계열 데이터의 불안정성으로 해운시황 예측에 대한 연구가 큰 성과를 내지 못하고 있지만 최근 대표적인 비선형 모델인 기계학습모델을 적용한 연구들이 활발히 진행되고 있다. 대부분의 기존 연구가 계량모델의 설계단계에서 입력변수에 해당하는 요인들을 기존 문헌연구와 연구자의 직관에 의존하여 선정했기 때문에 요인선정에 대한 체계적인 연구가 필요하다. 본 연구에서는 케이프선 운임을 대상으로 단계적 회귀모형과 랜덤포레스트모델을 이용하여 중요 영향요인을 분석하였다. 해운시장에서 비교적 단순한 수급구조를 가져 요인파악이 용이한 케이프선 운임을 대상으로 하였으며 총 16개의 수급요인들을 사전 추출하였다. 요인간의 상호관련성을 파악하여 단계적 회귀는 8개 요인, 랜덤포레스트는 10개 요인을 분석대상으로 선정하였으며 선정된 변수를 입력변수로 하여 예측한 결과를 비교하였다. 랜덤포레스트의 예측성능이 아주 우수하였는데 수요요인이 주로 선정된 단계적 회귀분석과는 달리 공급요인이 비중 있게 선정되었기 때문인 것으로 판단된다. 본 연구는 운임예측 연구에 있어 운임결정요인에 대한 과학적인 근거를 마련하였으며 이를 위해 기계학습 기반의 모델을 활용하였다는데 연구적 의의가 있다. 또한 시장정보의 분석에 있어 실무자들이 어떤 변수에 중점을 두어야 하는지에 대해 합리적 근거를 제시한 측면에서 해운기업의 의사결정에 실질적 도움이 될 것으로 기대된다.

핵심역량중심교육 관점에서 지층관련 초등과학교과서의 지식과 예비초등 교사들의 개념 연구 (A Study on the Knowledge of Elementary School Textbooks Related to Strata from the Perspective of Core Competency-Based Education and the Concept of Preservice Elementary Teachers)

  • 문병찬
    • 대한지구과학교육학회지
    • /
    • 제14권1호
    • /
    • pp.48-58
    • /
    • 2021
  • 이 연구는 핵심역량중심교육 관점에서 초등과학 교과서에 나타난 지층관련 내용을 분석하고, 교육대학교 1학년 학생 50명을 대상으로 학생들의 지층개념을 조사하였다. 연구결과, 초등교과서의 지층관련 지식은 대부분 'A는 B이다'와 같은 선언적 문장구조를 가지고 있다. 위와 같은 지식의 형식은 과학수업에서 학생들 간 토의와 토론의 주제로 사용하는데 한계를 지님으로써 핵심역량교육 관점에서 불리하다. 교육대학교 학생들의 지층개념과 관련하여 조사대상자의 70%는 진흙, 모래, 자갈 등의 퇴적물들을 단단한 퇴적암으로 변화시키는 속성작용의 원인으로'상부의 퇴적층에서 가하는 압력과 압력으로 생긴 열이다'고 응답하였다. 또한 지질시대의 자연환경에 대한 정보를 지층을 통해 얻을 수 있는지에 대해서는 약 20%가 '지층에서 나타난 화석을 통해서만 얻을 수 있다'고 응답했다. 약 80%의 학생들은 지층을 통해 얻을 수 과거 지질시대의 자연환경 정보를 얻을 수 있다고 응답하였으나, 얻을 수 있다고 주장하는 자연환경에 대한 정보는 지층의 단단함 등 오개념이 비율이 높았다. 결론적으로 지층개념에 대한 교수/학습을 통해 핵심역량교육의 학습효과를 높이기 위해서는 초등과학교과서에 제시된 지층 관련 지식의 형태와 내용을 검토할 필요가 있다.

인공지능 기술의 통합보안관제 적용 및 사이버침해대응 절차 개선 (Application of Integrated Security Control of Artificial Intelligence Technology and Improvement of Cyber-Threat Response Process )

  • 고광수;조인준
    • 한국콘텐츠학회논문지
    • /
    • 제21권10호
    • /
    • pp.59-66
    • /
    • 2021
  • 본 논문에서는 통합보안관제에 인공지능 기술을 적용하고, 기존 보안관제와 인공지능 보안관제의 대응절차를 일원화한, 개선된 통합보안관제 절차를 새롭게 제안하였다. 현재의 사이버보안관제는 사람의 능력 수준에 의존도가 매우 높다. 그래서 사람에 의해 여러 이기종 장비에서 발생하는 다양한 로그를 분석하고, 급증하는 보안이벤트를 모두 분석·처리한다는 것은 사실상 무리가 있다. 그리고 문자열과 패턴 일치로 탐지하는 시그니처 기반의 보안장비는 APT(Advanced Persistent Threat)와 같은 고도화·지능화된 사이버공격을 정확히 탐지하기에 기능상 부족한 면이 있다. 이러한 문제들을 해결하기 위한 방안으로 인공지능 지도·비지도학습 기술을 사이버공격 탐지 및 분석에 적용하고, 이를 통해 수 없이 많이 발생하는 로그와 이벤트의 분석을 자동화하여, 고도화된 사이버공격의 지속적인 발생을 예측·차단할 수 있도록 하여 전반적인 측면에서 대응수준을 높였다. 그리고 보안관제에 인공지능 기술을 적용한 후 AI와 SIEM의 중복 탐지 등의 문제점을 일원화 된 침해대응 프로세스(절차)로 통합·해결함으로써 개선된 통합보안관제 서비스 모델을 새롭게 제안하였다.

합리적인 하천수 관리체계 구축을 위한 자료기반 방류량 예측모형 개발 (Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System)

  • 유형주;이승오;최서혜;박문형
    • 한국방재안전학회논문집
    • /
    • 제13권4호
    • /
    • pp.75-92
    • /
    • 2020
  • 일반적으로 물수지 분석 시 공급에 해당되는 회귀수량의 경우 용수별 회귀율을 일률적으로 정하여 산정하는 방법을 채택하고 있어 정확한 가용유량을 산정하지 못하는 한계를 갖고 있다. 이에 본 연구에서는 회귀수 중 하·폐수에 초점을 두었고 인공신경망 등의 기계학습 모형을 적용하여 하수종말처리장의 방류량 예측 모형을 개발하였다. 시계열 자료예측 시 사용되는 주요 기계학습 모형인 LSTM (Long Short-Term Memory), GRU (Gated Recurrent Units), SVR (Support Vector Regression)모형을 적용하였으며 관측 값과 예측 값을 비교하는 오차지표를 통하여 방류량 예측의 최적의 모형을 선정하였다. 모형 적용 결과, GRU 모형의 평균제곱근 오차(Root Mean Square Error, RMSE)는 LSTM 모형과 SVR 모형보다 작으며 Nash-Sutcliffe 계수(NSE)는 LSTM 모형과 SVR 모형보다 큰 것을 확인하였고, 이를 근거로 하수종말처리장의 방류량 예측에 최적모형은 GRU 모형이라고 판단하였다. 다만, 극값에서는 예측 값이 과소 및 과대 산정되는 경향을 보여 추후 예측 정확도 향상을 위해서는 극한사상에 대한 추가자료 구축 및 입력 자료의 최소시간단위를 축소하는 것이 필요할 것으로 판단되었다. 또한, 예측하고자 하는 대상지의 용수이용량을 검토하고 계절적 영향을 반영할 수 있는 추가인자를 고려하게 되면 기후변동성에 대비하여 정확한 방류량 예측이 가능하며 예측 결과를 토대로 종합적인 하천수 사용관리 및 물이용 계획 수립을 위한 기초자료로 활용될 수 있을 것으로 기대된다.