• 제목/요약/키워드: 학습열의

검색결과 691건 처리시간 0.035초

AI 스피커를 이용한 생활소음 감소 (A Study on AI active noise cancellation for daily noise reduction)

  • 이종재;송연주;원채영;김민지;김정민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.1203-1206
    • /
    • 2021
  • 소음은 난청, 스트레스 등의 원인이 된다. 본 연구에서는 ANC(Active Noise Cancellation)을 바탕으로, 기술적인 방법을 통해 소음을 저감 시키는 스피커를 구현하였다. ANC 란 소음 주파수의 위상을 180° 변환하여 주파수와 레벨이 동일한 역 소음을 발생시켜 주변 소음을 저감, 차단하는 기술이다. 현재 시중 제품들에 적용되는 일반적인 ANC 의 경우, 피드백(Feedback) 방식이라는 점과 시간 지연(Time gap)이 발생한다는 한계가 있다. 이를 보완하기 위해 AI 학습으로 소음을 미리 예측하여 시간 지연을 줄이는 방법을 고안했다. 순환 신경망(RNN)의 장기의존성 문제를 해결하는 시계열 예측 딥러닝 알고리즘인 LSTM(Long Short-Term Memory Network) 모델을 사용하였다. 또한, AI 학습 효율을 향상시킬 수 있는 하드웨어 장비들을 활용하였다.

스마트 수도미터와 딥러닝을 활용한 수용가별 물 사용량 예측 (Prediction of water demand using deep learning and smart water meter)

  • 김종성;송재현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.394-394
    • /
    • 2022
  • 최근 스마트 수도미터의 보급을 통해 수용가구별 물 사용 자료를 수집할 수 있다. 이런 수용가구별 물 사용 패턴은 주말, 날씨 등 다양한 요인으로 인해 비선형적 특성을 가지고 있다. 그로인해 전통적인 시계열 예측 모형인 ARIMA 모형으로 적용하기 어렵다. 따라서 본 연구에서는 딥러닝 기반의 LSTM 모형을 통해 수용가구별 물 소비량 예측 모형을 개발하였다. 이 모형은 비선형적인 물 소비 패턴을 학습하기 위해 다양한 변수를 고려하였다. 서로 다른 종류의 4개 type (A : 단독주택, B: 아파트, C: 음식점, D : 초등학교)의 수용가구에 대한 ARIMA 모형과 LSTM 모형을 개발하였고, 학습에 사용되지 않은 새로운 데이터를 적용하여 정량적으로 예측성능을 비교했다. 그 결과, 모든 수용가구에서 LSTM 모형이 ARIMA 모형보다 성능이 우수하였다 (상관계수 : 평균89% | RMSE : 평균 5.60m3). 따라서 본 연구에서 제안한 모형은 수용가구별 물 사용량을 예측하는데 높은 활용도를 보일 것으로 기대된다.

  • PDF

딥러닝 모델 기반 보행자 GPS 경로 예측 시스템 연구 (A study on the Deep Learning model-based pedestrian GPS trajectory prediction system)

  • 윤승원;이원희;이규철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.89-92
    • /
    • 2022
  • 본 논문에서는 딥러닝 모델 기반 보행자의 GPS 경로를 예측하는 시스템을 제안한다. 다양한 경로 예측 방식들 중 본 논문은 GPS 데이터 기반 경로 예측 연구이다. 시계열 데이터인 보행자의 GPS 경로를 학습하여 다음 경로를 예측하도록 하는 딥러닝 모델 기반 연구이다. 본 논문에서는 보행자의 GPS 경로를 딥러닝 모델이 학습할 수 있도록 데이터 구성 방식을 제시하였으며, 예측 범위에 큰 제약이 없는 예측 딥러닝 모델을 제안한다. 본 논문의 딥러닝 모델에 적합한 파라메터들을 제시하였으며, 우수한 예측 성능을 보이는 결과를 제시한다.

  • PDF

시계열 데이터와 랜덤 포레스트를 활용한 시간당 초미세먼지 농도 예측 (Hourly Prediction of Particulate Matter (PM2.5) Concentration Using Time Series Data and Random Forest)

  • 이득우;이수원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권4호
    • /
    • pp.129-136
    • /
    • 2020
  • 최근 환경 문제에서 중요한 화두로 떠오른 초미세먼지(PM2.5)는 미세먼지(PM10)보다도 작은 부유물질이다. PM2.5는 안구나 호흡기 질환을 일으키며 뇌혈관에까지 침투할 수 있어서 시간별로 수치를 예측하여 대비하는 것이 중요하다. 그러나 PM2.5의 생성과 이동에 관한 명확한 설명이 아직까지는 제시되지 않고 있어서 예측에 어려움이 따른다. 따라서 PM2.5 예측뿐만 아니라 예측 결과에 대한 설명력을 갖는 예측 방법이 제시될 필요가 있다. 본 연구에서는 서울시의 시간당 PM2.5를 예측하고자 하며, 이를 위해 각기 다른 지상관측 데이터를 시계열로 전처리하고 부트스트랩수를 조정한 랜덤 포레스트(Random Forest)를 데이터 학습 및 예측에 사용하는 방법을 제안한다. 이 방법은 예측 모델이 입력 데이터의 시각별 정보를 균형 있게 학습하게 하며 예측 결과에 대한 설명이 가능하다는 장점을 갖는다. 예측 정확도 평가를 위해 기존 모델과의 비교실험을 수행한 결과 제안 방법은 모든 레이블에서 가장 뛰어난 예측 성능을 보였으며, PM2.5의 생성과 관련된 변수와 중국의 영향과 관련된 변수가 예측 결과에 중요한 영향을 미치는 것을 보여주었다.

Lexicon transducer를 적용한 conformer 기반 한국어 end-to-end 음성인식 (Conformer with lexicon transducer for Korean end-to-end speech recognition)

  • 손현수;박호성;김규진;조은수;김지환
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.530-536
    • /
    • 2021
  • 최근 들어 딥러닝의 발달로 인해 Hidden Markov Model(HMM)을 사용하지 않고 음성 신화와 단어를 직접 매핑하여 학습하는 end-to-end 음성인식 방법이 각광을 받고 있으며 그 중에서도 conformer가 가장 좋은 성능을 보이고 있다. 하지만 end-to-end 음성인식 방법은 현재 시점에서 어떤 자소 또는 단어가 나타날지에 대한 확률에 대해서만 초점을 두고 있다. 그 이후의 디코딩 과정은 현재 시점에서 가장 높은 확률을 가지는 자소를 출력하거나 빔 탐색을 사용하며 이러한 방식은 모델이 출력하는 확률 분포에 따라 최종 결과에 큰 영향을 받게 된다. 또한 end-to-end 음성인식방식은 전통적인 음성인식 방법과 비교 했을 때 구조적인 문제로 인해 외부 발음열 정보와 언어 모델의 정보를 사용하지 못한다. 따라서 학습 자료에 없는 발음열 변환 규칙에 대한 대응이 쉽지 않다. 따라서 본 논문에서는 발음열 정보를 담고 있는 Lexicon transducer(L transducer)를 이용한 conformer의 디코딩 방법을 제안한다. 한국어 데이터 셋 270 h에 대해 자소 기반 conformer의 빔 탐색 결과와 음소 기반 conformer에 L transducer를 적용한 결과를 비교 평가하였다. 학습자료에 등장하지 않는 단어가 포함된 테스트 셋에 대해 자소 기반 conformer는 3.8 %의 음절 오류율을 보였으며 음소 기반 conformer는 3.4 %의 음절 오류율을 보였다.

호텔 수요 예측을 위한 전역/지역 모델을 선택적으로 활용하는 시계열 예측 모델 (A Time Series Forecasting Model with the Option to Choose between Global and Clustered Local Models for Hotel Demand Forecasting)

  • 박기현;정경호;안현철
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.31-47
    • /
    • 2024
  • 인공지능 기술의 발전으로 인해 여행 및 호텔 산업에서도 다양한 목적의 인공지능과 기계학습 기법이 활용되고 있다. 특히 관광 산업에서는 수요 예측이 매우 중요한 요소로 인식되는데, 이는 서비스 효율성과 수익 극대화에 직접적인 영향을 미치기 때문이다. 수요 예측 시 시간에 따라 변화하는 데이터 흐름을 고려해야 하며, 이를 위해 통계적 기법과 기계학습 모델이 사용된다. 최근에는 수요 예측 데이터의 다양성과 현실의 복잡성을 반영하고자 기존 모델의 변형과 통합 연구가 진행되고 있으며, 그 결과 불확실성과 변동성에 대한 예측 성능이 향상되었음이 보고되고 있다. 본 연구에서는 기존 호텔수요 예측 연구에서 시도되지 않았던 다양한 기계학습 접근법을 통합하여 호텔 판매 수요 예측 정확도를 높이는 새로운 모델을 제안한다. 구체적으로 DTW K-means 클러스터링을 통해 지역모델을 구축하고, 전체 데이터를 활용한 전역모델과 선택적으로 결합하는 XGBoost 기반 시계열 예측 모델을 제시한다. 제안 모델은 지역과 전역 모델의 장점을 살려 호텔 수요 예측 성능을 제고할 것으로 기대된다. 이는 호텔 및 여행 산업 성장에 기여할 뿐만 아니라, 향후 다른 경영 분야 예측에도 확장 적용될 수 있을 것이다.

퍼지 인지 맵과 퍼지 연상 메모리를 이용한 오인진단 모델 (A Model for diagnosing Students′Misconception using Fuzzy Cognitive Maps and Fuzzy Associative Memory)

  • 신영숙
    • 인지과학
    • /
    • 제13권1호
    • /
    • pp.53-59
    • /
    • 2002
  • 본 논문은 퍼지 인지 맵과 퍼지 연상 메모리를 사용하여 열과 온도에 관한 학생들의 과학개념 이해에서 발생되는 오인을 진단할 수 있는 오인 진단 모델을 제시한다. 오인 진단 모델에서 퍼지 인지 맵은 과학현상에 대한 학생들이 가지는 선입개념들과 오인들을 인과관계로 표현할 수 있다. 또한 개념간의 인과관계를 기억할 수 있는 퍼지 연상 메모리를 통하여 오인의 원인들을 진단한다. 본 연구는 기존의 학습 오인을 진단하는 규칙기반 전문가 시스템의 한계성을 극복할 수 있는 새로운 방법을 제공하며, 교육분야의 다양한 영역에서 학습자들의 학습 진단을 위한 지능형 개인교수 시스템으로 적용될 수 있을 것이다.

  • PDF

예측오차 분포의 집중화를 이용한 비트율 개선 (Improvement of Bit Rate Using Concentration of the Distribution of Prediction Errors)

  • 김형철
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.207-210
    • /
    • 1998
  • 기존의 DPCM에 의한 압축방법은 예측오차를 양자화하여 전송한 후 복원하는 것으로 8레벨로 양자화하는 경우 3bpp의 비트율을 갖는다. 본 논문에서는 화소값의 압축에 의해 기존의 DPCM보다 예측오차값의 분포를 0을 중심으로 더 집중시킴으로써 더 낮은 비트율을 갖는 압축방법을 제안한다. 압축된 각 화소의 예측오차값은 DPAM방법에 의해 8-레벨로 양자화되고, 양자화된 예측오차의 열을 4와 2 단위로 분할하여 예측오차의 학습된 열로 구성된 각각의 코드북과 비교한다. 비교 결과 코드북의 주소를 생성하여 전송하고, 복원시 화소값을 확장한다. 제안된 방법은 DPCM방법보다 2.4~4.06dB 낮은 복원 영상의 화질을 보이지만, 비트율은 2.17~2.34bpp를 얻음으로써 0.66~0.83bpp정도 개선할 수 있다.

  • PDF

자연 언어의 장기 의존성을 고려한 심층 학습 모델 (Deep learning model that considers the long-term dependency of natural language)

  • 박찬용;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.281-284
    • /
    • 2018
  • 본 논문에서는 machine reading 분야에서 기존의 long short-term memory (LSTM) 모델이 가지는 문제점을 해결하는 새로운 네트워크를 제안하고자 한다. 기존의 LSTM 모델은 크게 두가지 제한점을 가지는데, 그 중 첫째는 forget gate로 인해 잊혀진 중요한 문맥 정보들이 복원될 수 있는 방법이 없다는 것이다. 자연어에서 과거의 문맥 정보에 따라 현재의 단어의 의미가 크게 좌지우지될 수 있으므로 올바른 문장의 이해를 위해 필요한 과거 문맥의 정보 유지는 필수적이다. 또 다른 문제는 자연어는 그 자체로 단어들 간의 복잡한 구조를 통해 문장이 이루어지는 반면 기존의 시계열 모델들은 단어들 간의 관계를 추론할 수 있는 직접적인 방법을 가지고 있지 않다는 것이다. 본 논문에서는 최근 딥 러닝 분야에서 널리 쓰이는 attention mechanism과 본 논문이 제안하는 restore gate를 결합한 네트워크를 통해 상기 문제를 해결하고자 한다. 본 논문의 실험에서는 기존의 다른 시계열 모델들과 비교를 통해 제안한 모델의 우수성을 확인하였다.

  • PDF

III-Conditioned 정방행렬의 단측 역행렬 산출용 유사 인공신경망 알고리듬 (A Neural-like Algorithm to Compute One-Sided Inverse of III-Conditioned Matrices)

  • 문병수;양성운;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.321-323
    • /
    • 1998
  • 이 논문에서는 크기가 큰 III-Conditioned Matrices 정방행렬의 좌측 또는 우측 역행렬 계산시 계산상의 정확도를 향상시키는 알고리듬에 대하여 기술한다. 이 알고리듬은 대상 행렬의 행벡터들을 Input으로 하고 해당 Input 벡터가 몇번째 행 벡터인지를 나타내는 단위 벡터를 Target 벡터로 하며 초기 Weight 값으로 Pivoting을 겸한 Gauss소거법을 적용하여 얻은 역행렬을 사용하는 Single Layer 인공신경망에 적용하는 역전파 알고리듬과 흡사한 것이다. 각각의 Input 행 벡터에 대하여 역행렬의 열 벡터들이 점진적으로 직교가 되거나 평행이 되도록 근접시키므로써 모든 Input 행 벡터들이 열벡터들에 비교적 균일하게 직교 또는 평행이 되도록 학습시키는 알고리듬이다.

  • PDF