• 제목/요약/키워드: 학습열의

검색결과 691건 처리시간 0.037초

SNS기반 캡스톤설계 코칭모델 (Capstone Design Coaching Model with SNS)

  • 오수열
    • 스마트미디어저널
    • /
    • 제5권2호
    • /
    • pp.8-14
    • /
    • 2016
  • 본 논문에서는 캡스톤설계 수행시 지도교수가 효율적인 지도와 관리가 가능하도록 하는 캡스톤설계의 정형화된 수행 절차와 운영에 관한 코칭모델을 제안하였다. 코칭모델은 소셜네트워크서비스를 기반으로 하는 캡스톤설계의 효율적인 운영에 관한 코칭과 캡스톤설계 수행과 관리를 위한 절차에 관한 코칭으로 제안하였고, 목포대학교 컴퓨터공학과 학생의 프로그램학습성과 성취도 평가를 통해 제안된 코칭모델의 효율성을 입증하였다.

온라인게임과 G-러닝 콘텐츠 유형 및 특성 분석 (Types and Characterization of Online Game vs. G-learning Content)

  • 배재환;옥수열
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.621-625
    • /
    • 2010
  • 현재 대부분의 교육용 콘텐츠는 학습자들에게 많은 배움의 기회를 제공하고 있음에도 불구하고 그 내용과 형식면에서 필연적으로 가질 수 밖에 없는 한계와 문제점으로 인하여, 이를 대체하는 새로운 차세대 교육 콘텐츠의 제작 방법에 관한 연구가 절실히 요구되고 있다. 이에 본 논문에서는 온라인게임 과 G-러닝 콘텐츠 유형 및 특성 분석을 통하여 이를 극복하고자 한다.

  • PDF

공장전력 사용량 데이터 기반 LSTM을 이용한 공장전력 사용량 예측모델 (Factory power usage prediciton model using LSTM based on factory power usage data)

  • 고병길;성종훈;조영식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.817-819
    • /
    • 2019
  • 다양한 학습 모델이 발전하고 있는 지금, 학습을 통한 다양한 시도가 진행되고 있다. 이중 에너지 분야에서 많은 연구가 진행 중에 있으며, 대표적으로 BEMS(Building energy Management System)를 볼 수 있다. BEMS의 경우 건물을 기준으로 건물에서 생성되는 다양한 DATA를 이용하여, 에너지 예측 및 제어하는 다양한 기술이 발전해가고 있다. 하지만 FEMS(Factory Energy Management System)에 관련된 연구는 많이 발전하지 못했으며, 이는 BEMS와 FEAMS의 차이에서 비롯된다. 본 연구에서는 실제 공장에서 수집한 DATA를 기반으로 하여, 전력량 예측을 하였으며 예측을 위한 기술로 시계열 DATA 분석 방법인 LSTM 알고리즘을 이용하여 진행하였다.

인공신경망기법을 이용한 지하수위 예측모형 (Groundwater level prediction model using artificial neural network technique)

  • 정일문;이정우;김지태;박인찬
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.562-562
    • /
    • 2016
  • 신경망 모형에서 학습이란 주어진 입출력시스템에 대하여 원하는 동작을 수행할 수 있도록 연결 강도를 최적의 상태로 적응(adaptation)시키는 과정을 의미한다. 따라서 강수와 지하수위의 관계를 연계시킨 인공신경망기법은 선택적으로 예측 지하수위에 영향을 미치는 변수들을 학습에 의하여 택함으로써 예측모형을 구성할 수 있다. 즉, 예측 지하수위와의 상관관계에 의하여 입력되는 변수와의 연결강도를 조정하여 매개변수 조정 및 모형의 최적화를 자동화할 수 있다. 본 연구에서는 지하수위에 영향을 주는 요소는 지하수위와 강우량이라고 가정하고, 지하수위의 입출력과정을 시계열 분석에 의하여 모형화하였으며 예측지하수위는 강우 및 지하수위의 선행조건과 매우 밀접한 관계를 갖는다. 따라서 선행강우 및 지하수위의 상태에 따라 이를 입력하여 미래의 지하수위를 예측하게 된다. 이 모형을 제주지역의 관측소에 적용한 결과 관측소별로 타당한 예측결과를 도출하였다.

  • PDF

딥러닝 기반 어선조업종류 판별 방법 (Deep-learning based Fishing Gear Type Classification)

  • 김광일;김지희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.33-34
    • /
    • 2019
  • 대부분의 나라에서는 어선의 위치발신장치를 이용하여 어선 조업상황을 모니터링 한다. 우리나라도 어선의 위치발신장치를 이용하여 어선 조업량, 불법조업 유무를 판별한다. 현재까지는 어선의 불법조업 유무 판별은 어선의 위치정보 기반으로 이루어 졌으나, 허가받지 않는 어구를 사용하는 불법조업에 대한 판별은 불가능 하였다. 이에 본 논문에서는 어선 항적과 조업면허 데이터를 이용하여 데이터 기반의 어선 조업 판별모델을 개발하고자 한다. 이를 위해 어선 항적데이터를 시계열 단위로 전처리하여 학습 이미지들을 생성하고, 해당 어선의 조업면허 정보를 레이블로 하여 학습 데이터를 제안하는 딥러닝 모델에 적용한다. 제안하는 방법의 검증을 위해 1년 동안 제주 주변해역에서 조업하는 어선의 선박자동식별장치의 항적데이터를 수집하여 실험을 하였다. 실험 결과 제안한 방법의 분류정확도는 71.5%를 얻었다.

  • PDF

머신러닝을 이용한 한국프로야구 관중 수 예측모델 (Prediction Model of the Number of Spectators in Korean Baseball League Using Machine Learning)

  • 서원빈;길이만
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.330-333
    • /
    • 2019
  • 본 연구는 기존 관중 수 예측에 주로 사용되는 ARIMA 모형과 다른 GKFN(Network with Gaussian kernel functions) 모델을 시계열 모델로 제안하고 여러 변수 간의 상관관계를 분석한 MLP(Multilayer Perceptron) 모델을 각각 따로 만들어 두 가지 RMSE값의 가중치를 결합한 새로운 모델을 최종적으로 제안한다. GKFN 모델은 phase space 분석을 위해 smoothness measure를 측정하고 커널 개수를 늘려가며 학습시키는 방법이다. 또한, MLP 모델은 관중 수에 영향을 주는 여러 변수(날짜, 날씨 등 팀과 관련된 특징들)의 상관관계를 correlation coefficient 값을 이용해 분석하고 높은 상관관계를 가지는 변수들을 이용해 MLP 모델을 만들어 학습하는 것이다. 이를 통해 프로야구팀 기아 타이거즈의 일일 단위 관중 수를 예측하고자 하였다. 관중 수 예측을 통해 구단과 관객 모두 긍정적인 활용이 가능할 것이다. 훈련 자료는 2010년부터 2018년까지 9년 동안 기아 타이거즈의 일별 관중 수를 자료로 하였다.

  • PDF

상황 인식 모바일 컴퓨팅을 위한 사운드 분류 시스템 설계 (Design of a Sound Classification System for Context-Aware Mobile Computing)

  • 김주희;이석준;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1305-1308
    • /
    • 2013
  • 본 논문에서는 스마트폰 사용자의 실시간 상황 인식을 위한 효과적인 사운드 분류 시스템을 제안한다. 이 시스템에서는 PCM 형태의 사운드 입력 데이터에 대한 전처리를 통해 고요한 사운드와 화이트 노이즈를 학습 및 분류 단계 이전에 미리 여과함으로써, 계산 자원의 불필요한 소모를 막을 수 있다. 또한 에너지 레벨이 낮아 신호의 패턴을 파악하기 어려운 사운드 데이터는 증폭함으로써, 이들에 대한 분류 성능을 향상시킬 수 있다. 또, 제안하는 사운드 분류 시스템에서는 HMM 분류 모델의 효율적인 학습과 적용을 위해 k-평균 군집화를 이용하여 특징 벡터들에 대한 차원 축소와 이산화를 수행하고, 그 결과를 모아 일정한 길이의 시계열 데이터를 구성하였다. 대학 연구동내 다양한 일상생활 상황들에서 수집한 8가지 유형의 사운드 데이터 집합을 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제안하는 사운드 분류 시스템의 높은 성능을 확인할 수 있었다.

가스 센서 데이터셋 시각화를 위한 데이터 전처리 기법 (Data Preprocessing Techniques for Visualizing Gas Sensor Datasets)

  • 김준수;박경원;임태범;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.21-22
    • /
    • 2021
  • 최근 AI(Artificial Intelligence)를 기반으로 정밀한 가스 성분 감지를 위한 후각지능(Olfactory intelligence) 기술에 연구가 활발히 진행 중이다. 후각지능 학습데이터는 다른 감지 방식의 가스 센서들이 동시에 적용되는 멀티모달리티의 특성을 지니며 또한, 공간상에 분포된 센서 배열을 통해 획득된 다차원의 시계열 특성을 지닌다. 따라서 대량의 다차원 데이터에 대한 정확한 이해와 분석을 위해서는 데이터를 전처리하고 시각화할 수 있는 기술이 필요하다. 본 논문에서는 후각지능 학습을 위한 다차원의 복잡한 가스 데이터의 시각화를 위해 잡음 등의 불필요한 값을 제거하고, 데이터가 일관성을 가지도록 하며, 데이터의 차원을 시각화 가능하도록 축소하기 위한 전처리 방법을 제시한다.

  • PDF

DeepLabV3+를 이용한 고해상도 위성영상에서의 도시 변화탐지 (Urban Change Detection for High-resolution Satellite Images using DeepLabV3+)

  • 송창우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.441-442
    • /
    • 2021
  • 본 논문에서는 고해상도의 시계열 위성영상을 딥러닝 알고리즘으로 학습하여 도시 변화탐지를 수행한다. 고해상도 위성영상을 활용한 서비스는 4 차 산업혁명 융합 신사업 중 하나인 스마트시티에 적용하여 도시 노후화, 교통 혼잡, 범죄 등 다양한 도시 문제 해결 및 효율적인 도시를 구축하는데 활용이 가능하다. 이에 본 연구에서는 도시 변화탐지를 위한 딥러닝 알고리즘으로 DeepLabV3+를 사용한다. 이는 인코더-디코더 구조로, 공간 정보를 점진적으로 회복함으로써 더욱 정확한 물체의 경계면을 찾을 수 있다. 제안하는 방법은 DeepLabV3+의 레이어와 loss function 을 수정하여 기존보다 좋은 결과를 얻었다. 객관적인 성능평가를 위해, 공개된 데이터셋 LEVIR-CD 으로 학습한 결과로 평균 IoU 는 0.87, 평균 Dice 는 0.93 을 얻었다.

은닉 마르코프 모델을 이용한 한국어 개체명 말뭉치 생성 (Generating Korean NER Corpus using Hidden Markov Model)

  • 김재균;김창현;천민아;박호민;윤호;남궁영;최민석;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.357-361
    • /
    • 2019
  • 기계학습을 이용하여 개체명 인식을 수행하기 위해서는 많은 양의 개체명 말뭉치가 필요하다. 이를 위해 본 논문에서는 문장 자동 생성을 통해 개체명 표지가 부착된 말뭉치를 구축하는 방법을 제안한다. 기존의 한국어 문장 생성 연구들은 언어모델을 이용하여 문장을 생성하였다. 본 논문에서는 은닉 마르코프 모델을 이용하여 주어진 표지열에 기반 하여 문장을 생성하는 시스템을 제안한다. 제안하는 시스템을 활용하여 자동으로 개체명 표지가 부착된 3,286개의 새로운 문장을 생성할 수 있었다. 학습말뭉치 문장과 약 70%의 차이를 보이는 새로운 문장을 생성하였다.

  • PDF