Generating Korean NER Corpus using Hidden Markov Model

은닉 마르코프 모델을 이용한 한국어 개체명 말뭉치 생성

  • Published : 2019.10.10

Abstract

기계학습을 이용하여 개체명 인식을 수행하기 위해서는 많은 양의 개체명 말뭉치가 필요하다. 이를 위해 본 논문에서는 문장 자동 생성을 통해 개체명 표지가 부착된 말뭉치를 구축하는 방법을 제안한다. 기존의 한국어 문장 생성 연구들은 언어모델을 이용하여 문장을 생성하였다. 본 논문에서는 은닉 마르코프 모델을 이용하여 주어진 표지열에 기반 하여 문장을 생성하는 시스템을 제안한다. 제안하는 시스템을 활용하여 자동으로 개체명 표지가 부착된 3,286개의 새로운 문장을 생성할 수 있었다. 학습말뭉치 문장과 약 70%의 차이를 보이는 새로운 문장을 생성하였다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원(R7119-16-1001, 지식증강형 실시간 동시통역 원천기술 개발)과 2017년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2017M3C4A7068187, 한국어 정보처리 원천 기술 연구 개발)