일반적으로 자동분류는 학습문서의 개수에 영향을 받는다고 알려져 있지만 실제로 학습문서의 수가 텍스트 자동분류에 어떻게 영향을 주는지 입증한 연구는 거의 없었다. 본 연구에서는 학습문서 수가 자동분류에 어떤 영향을 주는지 알아보기 위해 최근에 개발된 편차기반 분류방법을 중심으로 다른 분류 알고리즘과 비교하는데 초점을 두었다. 실험결과, 편차기반 분류모델은 학습문서의 수가 총 21개(7개 장르)인 상황에서 정확도가 0.8로 베이지안이나 지지벡터기계보다 우수하게 나타났다. 이것은 편차기반 분류모델이 장르내의 주제정보를 이용하여 학습하기 때문에 학습문서의 수가 적더라도 다른 학습방법보다 좋은 자질 선택 능력을 갖는다는 것을 입증한 것이다.
이 논문에서는 Helmholtz machine을 사용하여 데이터의 분포 추정을 함으로써 문서 분류기를 학습하는 방법 제안한다. Helmholtz machine 은 생성 모델과 인식 모델로 구성된 그래프 모델로서, 그래프 모델에서의 분포 추정을 보다 가능하게 하기 위한 근사 방법 중의 하나이다. Helmholtz machine에서의 각 입력 노드는 문서를 구성하는 하나의 단어에 대응하는 이진 노드이다. 입력 노드의 개수가 많아지면 그만큼 학습 시간이 증가하기 때문에, 학습 시간을 줄이면서 적정 수준의 성능을 유지하기 위해 자질 선정이 필요하다. 이러한 요구 사항을 충족시키기 위해 정보획득량(information gain)기준을 이용하였으며, 뉴스 그룹 데이터에 대해 그 성능을 측정하고 Naive Bayes를 이용한 것과 비교한다.
본 논문에서는 문서분류의 학습단계에 가상적합문서기법을 적용하여 성능을 향상시킬 수 있는 방법을 제안한다. 어떤 범주에 대해 적합하다고 판단된 두 개의 적합문서를 결합해서 생성된 문서 또한 적합문서가 된다는 관찰을 통해서, 문서분류기가 학습할 수 있는 새로운 정보를 추가함으로써 분류기의 학습을 돕는다. 제안하는 방법은 학습문서집합에 있는 적합문서들의 쌍을 조합해서 단순히 변환함으로써 가상의 문서를 생성한다. 이 방법에 의해서 생성된 가상 문서는 두 개의 적합문서에 같이 발생하는 어휘들에 대해서는 높은 가중치를 갖고, 문서 내의 어휘 공간이 확장되는 특성을 갖는다. 대량의 문서를 포함하는 TREC-11 필터링 태스크 참여에서 제안한 방법은 제공되는 학습문서를 이용한 기본 성능에 비해 71%의 성능 향상을 보였다. 또한 문서분류 연구에서 일반적으로 비교를 위해 이용하는 실험집합인 Routers-21578에서 학습집합의 적합문서 개수가 100개 이하인 범주에 대해서 기본 학습문서를 이용한 분류기에 비해 11%의 성능향상을 보였다. 가상문서를 계속 추가해 나가면서 성능의 변화를 분석한 결과, 가상문서의 추가는 문서분류기의 학습능력을 도와 성능이 꾸준히 향상되고 있음을 보였다.
인터넷을 통해 제공되는 맡은 양의 뉴스 정보 중에서 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것이 필요하다. 먼저, 인터넷에 접속된 뉴스서버들의 뉴스 문서를 각 그룹별로 수집한다. 수집된 뉴스 문서를 대상으로 퍼지추론을 통하여 문서를 대표하는 키워드를 추출하여 데이터베이스에 저장한다. 각 뉴스그룹의 문서에서 단어들을 분석하여 입력된 단어들의 개수를 이용하여 정규화 시켜서 대표적인 비지도학습 신경망인 코호넨 신경망을 사용하여 학습시킨다. 코호넨 신경망으로 추출된 단어들의 연관성을 활용하여 뉴스그룹을 클러스터링한다. 최종적으로 사용자가 관심 있는 키워드를 입력하면, 학습된 신경망이 유사한 뉴스그룹들을 사용자에게 제시해준다.
자질 선택은 문서 분류와 같이 않은 자질을 사용하는 지도식 기계학습에 관한 연구에서 날로 중요성이 커지고 있다. 특히 특허문서 분류와 같은 작업은 기존의 문서 분류보다도 훨씬 많은 자질과 분류 범주를 가지기 때문에 전체 문서의 특징을 드러내는 적절한 부분집합을 선택해 학습하는 것이 절실하다. 전통적인 자질선택 방법은 필터라는 방법으로서 빠르지만 임계값을 정하기가 어렵다는 문제가 있다. 한편 최근에 많이 연구되는 래퍼는 일반적으로 필터보다. 좋은 성능을 보이지만 자질의 개수가 많을수록 시간이 오래 걸린다는 단점이 있다. 본 연구에서는 필터와 래퍼를 상호 보완적으로 결합하여 최적의 필터를 자동적으로 찾는 래퍼를 제안한다. 실험 결과, 제안한 방법이 효과적으로 자질 집합을 선택하는 것을 확인할 수 있었다.
웹 문서를 분류하는 목적은 특정 주제별로 중요한 문서들을 구분하려는 것과 사용자의 선호도를 바탕으로 개인화를 하려는 것으로 나누어 볼 수 있다. 특히, 웹의 효율적인 탐색을 위해 사용자가 관심 있어 할 웹 문서를 분류하는 것은 중요하다 일반적으로 하나의 웹 문서는 특징 추출방법에 의해 문서 벡터로 표시되며 사용자의 선호여부나 주제번호를 클래스로 삼는다. 사용자가 선호도를 표시한 웹 문서를 사용하여 새로운 웹 문서의 선호 여부를 예측하기 위해 자기 구성지도(SOM)를 사용하면, 시각적으로 구조를 보여주어 데이터 사이의 관계를 효과적으로 이해할 수 있다. 그러나 SOM은 노드의 개수와 구조를 자동적으로 결정하지 못하는 단점이 있기 때문에, SOM의 장점을 활용하면서 자동적으로 구조를 결정하기 위해 구조적응 자기구성지도(SASOM)를 이용한다. 보다 나은 성능과 다양한 해석을 위해, 여러 개의 SASOM을 서로 다른 특징추출 방법을 이용하여 학습시킨 후 사용자가 주관적으로 분류기의 중요도를 결정할 수 있는 퍼지적분을 사용하여 결합하였다. UCI Syskill & Webert 데이터에 대한 실험결과 기존의 DT, MLP, naive Bayes 분류기 보다 향상된 성능을 보였다.
웹 문서 정보 서비스는 관리자의 효율적 문서관리와 사용자의 문서검색 편의성을 위해 문서 분류 시스템을 필요로 한다. 기존의 문서 분류 시스템은 분류하고자 하는 문서 내 선택된 자질어의 개수가 적거나, 특정 범주의 문서 비율이 높아 그 범주에서 대부분의 자질어가 선택되어 모델이 생성된 경우 분류 정확도가 저하되는 문제점을 가진다. 이러한 문제점을 해결하기 위해 본 논문에서는 'Modified ECCD' 기법 및 '문서별 범주 가중치' 특징 변수를 사용한 문서 분류 시스템을 제안한다. 실험 결과, 제안 방법인 'Modified ECCD' 기법이 ${\chi}^2$ 및 ECCD 기법에 비해 높은 분류 성능을 보였으며, '문서별 범주 가중치' 특징 변수를 'Modified ECCD' 기법으로 선택된 자질어 변수에 추가하여 학습하였을 경우에 더 높은 분류 성능을 보였다.
최근 인터넷의 발전으로 많은 정보와 지식을 우리는 인터넷에서 제공받을 수 있게되었다. 인터넷에 존재하는 정보는 수많은 웹서버에 산재되어 있으며, 정보의 위치는 주소(URL)를 가지고 존재하게 되는데 사용자는 자신이 관심있는 정보의 주소를 저장하기 위하여 웹브라우저 북마크(Bookmark)기능을 사용한다. 그러나 북마크 기능은 웹문서의 주소 저장에 일차적인 목적을 두고 있으며, 이후 북마크의 개수가 증가하면, 사용자는 북마크관리가 어렵게되므로 사용자 북마크 파일을 자동으로 분류하여 관리할수 있는 에이전트 기술을 사용하고자 한다. 대표적인 분류에이전트 시스템으로는 전자우편 분류 에이전트인 Maxims, 뉴스기사 분류 에이전트인 NewT, 엔터테인먼트(Entertainment) 선별 에이전트인 Ringo 등이 있다. 이러한 시스템들은 분류할 대상에 따라 조금씩 다른 모습의 에이전트 기능을 보이고 있으며, 본 논문은 기계학습 이론중 교사학습 알고리즘인 나이브 베이지안 학습방법(Naive Bayesian Learning method)을 사용하여 사용자가 분류하지 못한 북마크를 자동으로 분류하는 단일 에이전트 기반 북마크 분류기를 설계, 구현하고자한다.
본 연구의 목적은 다양한 도메인에 대한 소프트웨어 요구사항 명세서로부터 수집된 요구사항을 데이터로 활용하여 데이터 중심적 접근법(Data-driven Approach)의 연구를 통해 요구사항을 분류한다. 이 과정에서 기존 요구사항의 특징과 정보를 바탕으로 다양한 자연어처리를 이용한 데이터 전처리와 기계학습 모델을 통해 요구사항을 기능적 요구사항과 비기능적 요구사항으로 분류하고 각 조합의 결과를 제시한다. 그 결과로, 요구사항을 분류하는 과정에서, 자연어처리를 이용한 데이터 전처리에서는 어간 추출과 불용어제거와 같은 토큰의 개수와 종류를 감소하여 데이터의 희소성을 좀 더 밀집형태로 변형하는 데이터 전처리보다는 단어 빈도수와 역문서 빈도수를 기반으로 단어의 가중치를 계산하는 데이터 전처리가 다른 전처리보다 좋은 결과를 도출할 수 있었다. 이를 통해, 모든 단어를 고려하여 가중치 값은 기계학습에서 긍정적인 요인을 볼 수 있고 오히려 문장에서 의미 없는 단어를 제거하는 불용어 제거는 부정적인 요소로 확인할 수 있었다.
기존의 내용기반 스팸메일 분류는 전자메일이 이미지를 많이 가지고 있고 텍스트는 적게 가지고 있을 경우에는 내용을 분석하기 어려우므로 스팸메일을 분류하는 데 한계가 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 전자메일의 구조를 분석하는 링크구조분석 스팸메일 분류 알고리즘을 제안한다. 이것은 전자메일 안의 하이퍼링크의 개수와 하이퍼링크가 가리키는 웹 문서들이 다른 웹 문서에 의해 링크된 수를 측정하여 전자메일의 중요도를 계산한 후 의사결정트리를 학습하여 스팸메일과 정상메일을 분류한다. 또한 위의 링크구조분석 알고리즘과 하이퍼링크의 서버 주소만을 이용한 변형된 링크구조 분석 알고리즘, 그리고 SVM(support vector machine)을 이용한 내용기반 방법을 다수결 원칙으로 결합한 통합 스팸메일 분류 시스템을 제안한다. 실험 결과, 제안한 링크구조분석 알고리즘은 기존의 내용기반 방법 보다 스팸메일 분류 정확도가 94.8%로 약간 향상되었으며 또한 통합 스팸메일 분류 시스템도 내용기반 방법과 비교하여 향상된 97.7%를 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.