• Title/Summary/Keyword: 학습데이터 구축

Search Result 1,052, Processing Time 0.029 seconds

A Study on Deep Learning Based Personal Protective Equipment Detection (딥러닝 기반 개인 보호장비 검출에 관한 연구)

  • Park, Jong-Hwa;Jeon, So-Yeon;Jeon, Ji-Hye;Kim, Jae-Hee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.650-651
    • /
    • 2020
  • 본 논문은 YOLO v4 알고리즘을 이용하여 산업 현장에서 근로자의 개인 보호장비를 검출하는 방법을 제시한다. 학습데이터 주석은 사람 영역, 안전모, 안전 조끼 혹은 벨트 영역을 검출하도록 처리하였으며, 학습데이터 2,198개, 검증데이터 275개를 학습하는 데 이용하였다. 실험 결과 학습 반복 수 10,000번을 기준으로 81.81%의 mAP가 나옴을 확인하였다. 추후 정확도 개선을 위해 학습데이터 구축 및 전·후처리 알고리즘 관련 연구를 수행할 예정이다.

  • PDF

For creating a Dataset Image URI and Metadata Collection Web Crawler (데이터셋 생성을 위한 이미지 URI 및 메타데이터 수집 크롤러)

  • Park, June-Hong;Kim, Seok-Jin;Jung, Yeon-Uk;Lee, Dong-Uk;Jeong, YoungJu;Seo, Dong-Mahn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.1082-1084
    • /
    • 2019
  • 인공지능 학습에 대한 관심이 증가하면서 학습에 필요한 데이터셋 구축에 필요한 많은 양의 데이터가 필요하다. 데이터셋 구축에 필요한 데이터들을 효과적으로 수집하기 위한 키워드 기반 웹크롤러를 제안한다. 구글 검색 API 를 기반으로 웹 크롤러를 설계하였으며 사용자가 입력한 키워드를 바탕으로 이미지의 URI 와 메타데이터를 지속적으로 수집하는 크롤러이다. 수집한 URI 와 메타데이터는 데이터베이스를 통해 관리한다. 향후 다른 검색 API 에서도 동작하고 다중 쓰레드를 활용하여 크롤링하는 속도를 높일 예정이다.

Extension and Management of Verb Phrase Patterns based on Lexicon Reconstruction and Target Word Information (사전 재구성과 대역어 정보를 통한 동사구 패턴의 확장 및 관리)

  • Hong, Mun-Pyo;Kim, Young-Kil;Ryu, Chul;Choi, Sung-Kwon;Park, Sang-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.103-107
    • /
    • 2002
  • 데이터 기반 기계번역의 성공여부는 대량의 데이터를 단기간에 구축하는 방법과, 또 구축된 데이터에 대한 효과적인 관리 방법이 좌우한다고 할 수 있다. 대표적인 데이터 기반 기계번역 방법론인 예제 기반 기계번역 방식이나 패턴 기반 기계번역 방식에서는 최소한의 학습 내지는 학습과정 없이 데이터를 구축하는 데에 연구가 중점적으로 이루어져왔으나, 데이터의 관리 문제에 대해서는 많은 연구가 이루어지지 못하였다. 그러나 데이터의 확장 못지않게 데이터의 효율적인 관리도 데이터 기반 기계번역 시스템의 개발에서 매우 중요하다. 이 논문에서는 사/피동 링크 등을 이용하여 사전을 재구성하는 것이 데이터의 일관성과 관리성을 향상시키고, 이론적인 면에서는 정보 기술상의 잉여성을 줄인다는 점을 보인다. 또한 이러한 정보에 기반하여 기구축된 동사구 패턴으로부터 대역어 정보를 이용하여 새로운 패턴을 만들어내는 방법론도 제시한다.

  • PDF

Dataset Construction and Model Learning for Manufacturing Worker Safety Management (제조업 근로자 안전관리를 위한 데이터셋 구축과 모델 학습)

  • Lee, Taejun;Kim, Yunjeong;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.890-895
    • /
    • 2021
  • Recently, the "Act of Serious Disasters, etc" was enacted and institutional and social interest in safety accidents is increasing. In this paper, we analyze statistical data published by government agency on safety accidents that occur in manufacturing sites, and compare various object detection models based on deep learning to build a model to determine dangerous situations to reduce the occurrence of safety accidents. The data-set was directly constructed by collecting images from CCTVs at the manufacturing site, and the YOLO-v4, SSD, CenterNet models were used as training data and evaluation data for learning. As a result, the YOLO-v4 model obtained a value of 81% of mAP. It is meaningful to select a class in an industrial field and directly build a dataset to learn a model, and it is thought that it can be used as an initial research data for a system that determines a risk situation and infers it.

The Bigdata Processing Environment Building for the Learning System (학습 시스템을 위한 빅데이터 처리 환경 구축)

  • Kim, Young-Geun;Kim, Seung-Hyun;Jo, Min-Hui;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.7
    • /
    • pp.791-797
    • /
    • 2014
  • In order to create an environment for Apache Hadoop for parallel distributed processing system of Bigdata, by connecting a plurality of computers, or to configure the node, using the configuration of the virtual nodes on a single computer it is necessary to build a cloud fading environment. However, be constructed in practice for education in these systems, there are many constraints in terms of cost and complex system configuration. Therefore, it is possible to be used as training for educational institutions and beginners in the field of Bigdata processing, development of learning systems and inexpensive practical is urgent. Based on the Raspberry Pi board, training and analysis of Big data processing, such as Hadoop and NoSQL is now the design and implementation of a learning system of parallel distributed processing of possible Bigdata in this study. It is expected that Bigdata parallel distributed processing system that has been implemented, and be a useful system for beginners who want to start a Bigdata and education.

Attribute extract method based TDIDT for construction of user profile (사용자 프로파일 구축을 위한 TDIDT기반 관심단어 추출기법)

  • 이선미;박영택
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.321-327
    • /
    • 2002
  • 본 논문은 기존의 귀납적 결정 트리 방식에서의 문제점 개선을 통한 사용자 관심 프로파일 구축을 목적으로 한다. 특히 사용자 관심 프로파일의 정확도 향상을 위한 속성 선택에 대한 연구에 초점을 맞추고 있다. 사용자의 관심, 비관심 문서를 대상으로 사용자 관심 키워드를 생성하고 이를 바탕으로 초기 문서들을 재표현한다. 재표현된 문서를 입력 집합으로 하여 기계학습을 진행한다. 본 논문의 의사 결정 트리 생성 알고리즘은 입력 집합을 클래스별로 가장 잘 나누는 속성을 선택하여 노드를 구성하는 면에서는 기존의 알고리즘과 같다. 그러나 기존의 의사 결정 트리 알고리즘에서는 hill-climbing.방식을 사용함으로써 사용자의 관심을 나타내는 중요한 단어가 사용자 관심 프로파일에서 숨겨질 경우가 발생한다. 이를 최소화하기 위해 특징 추출을 통해 선택된 속성을 그대로 학습의 입력 데이터로 사용하는 것이 아니라 입력데이터를 가장 잘 나누는 속성과 그 다음 속성을 대상으로 disjunctive 연산을 통해 새로운 속성을 생성하여 이것을 속성 집합에 포함시키고 이를 학습의 입력 데이터로 이용한다. 이와 같이 disjunctive operator를 이용하여 새로운 속성을 의사 결정 트리 형성 시 이용하면 사용자의 중요한 관심을 포함하는 의미 있는(semantic) 사용자 관심 프로파일 구축이 가능해지고, 사용자 관심 프로파일을 기반으로 사용자가 관심 있는 문서를 제공할 수 있는 개인화 서비스를 제공한다.

  • PDF

A Training Feasibility Evaluation of Nuclear Safeguards Terms for the Large Language Model (LLM) (거대언어모델에 대한 원자력 안전조치 용어 적용 가능성 평가)

  • Sung-Ho Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.479-480
    • /
    • 2024
  • 본 논문에서는 원자력 안전조치 용어를 미세조정(fine tuning) 알고리즘을 활용해 추가 학습한 공개 거대 언어모델(Large Language Model, LLM)이 안전조치 관련 질문에 대해 답변한 결과를 정성적으로 평가하였다. 평가 결과, 학습 데이터 범위 내 질문에 대해 학습 모델은 기반 모델 답변에 추가 학습 데이터를 활용한 낮은 수준의 추론을 수행한 답변을 출력하였다. 평가 결과를 통해 추가 학습 개선 방향을 도출하였으며 저비용 전문 분야 언어 모델 구축에 활용할 수 있을 것으로 보인다.

  • PDF

A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning (개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델)

  • Lee, Hwayoung
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • Clear analysis and diagnosis of various characteristic factors of individual students is the most important in order to realize individual customized teaching and learning, which is considered the most essential function of math artificial intelligence-based digital textbooks. In this study, analysis factors and tools for individual customized learning diagnosis and construction models for data collection and analysis were derived from mathematical AI digital textbooks. To this end, according to the Ministry of Education's recent plan to apply AI digital textbooks, the demand for AI digital textbooks in mathematics, personalized learning and prior research on data for it, and factors for learner analysis in mathematics digital platforms were reviewed. As a result of the study, the researcher summarized the factors for learning analysis as factors for learning readiness, process and performance, achievement, weakness, and propensity analysis as factors for learning duration, problem solving time, concentration, math learning habits, and emotional analysis as factors for confidence, interest, anxiety, learning motivation, value perception, and attitude analysis as factors for learning analysis. In addition, the researcher proposed noon data on the problem, learning progress rate, screen recording data on student activities, event data, eye tracking device, and self-response questionnaires as data collection tools for these factors. Finally, a data collection model was proposed that time-series these factors before, during, and after learning.

Evaluation Category Selection For Automated Essay Evaluation of Korean Learner (한국어 학습자 작문 자동 평가를 위한 평가 항목 선정)

  • Kwak, Yong-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.270-271
    • /
    • 2017
  • 본 연구는 한국어 학습자 작문의 자동 평가 시스템 개발의 일환으로, 자동 평가 결과에 대한 설명과 근거가 될 수 있는 평기 기준 범주를 선정하기 위한 데이터 구축과 선정 방법을 제시한다. 작문의 평가 기준의 영역과 항목은 평가체계에 대한 이론적 연구에 따라 다양하다. 이러한 평가 기준은 자동 평가에서는 식별되기 어려운 경우도 있고, 각각의 평가 기준이 적용되는 작문 오류의 범위도 다양하다. 그러므로 본 연구에서는 자동 평가 기준 선정의 문제는 다양한 평가 기준에 중 하나를 선정하는 분류의 문제로 보고, 학습데이터를 구축, 기계학습을 통해 자동 작문 평가에 효과적인 평가 기준을 선정 가능성을 제시한다.

  • PDF

Implementation of Mobile Learning System Using Secondary Storage Device (보조저장장치를 활용한 모바일 학습시스템 구축)

  • Park, doo-jin;Lee, hwan-joong;Ha, chang-seung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.521-524
    • /
    • 2008
  • The existing mobile learning service is the method that provides data packets in real time. It has some problems of much data packet cost and transmission speed to provide the mobile learning service for messy capacity by the existing one. To solve the problems, a secondary storage device like USB is added to a mobile phone. In this paper, we suggest to implementation of the mobile learning system of the new method using secondary storage device.

  • PDF