• 제목/요약/키워드: 학습데이터 구축

검색결과 1,052건 처리시간 0.023초

멀티미디어 정보시스템을 이용한 기업체 교육의 효과요인 도출을 위한 실증적 연구

  • 김병곤;이동만;박순창
    • 한국전자거래학회:학술대회논문집
    • /
    • 한국전자거래학회 1999년도 종합학술대회발표논문집
    • /
    • pp.280-293
    • /
    • 1999
  • 본 연구는 경영학 관련 분야에서 멀티미디어 기술의 경영학적 측면의 응용에 관한 연구의 중요성이나 필요성을 많은 학자들이 인식하고 있음에도 불구하고 아직 멀티미디어에 관한 연구가 전무한 실정에서 시도한 초기연구라는데 연구의 의의가 있다. 이러한 시점에서 교육공학과 경영정보학을 접목시킨 멀티미디어에 관한 연구는 상당히 중요할 것으로 판단된다. 이와 같이 본 연구는 경영정보학 분야에서 멀미미디어에 관한 연구로서는 초기의 연구로서, 본 연구가 가지는 연구의 필요성이나 중요성에 대해서는 우리들이 충분히 인식할 수 있을 것이다. 지금까지 국내외적으로 멀티미디어 정보시스템을 이용한 교육의 효과에 관한 연구는 몇 편의 탐색적 논문이 발견되고 있으나, 멀티미디어를 이용한 교육의 효과를 구성하는 요인이 무엇인지를 밝히기 위한 연구는 거의 전무한 실정이다 이러한 상황에서 멀티미디어를 이용한 교육의 효과를 구성하는 요인이 무엇이며, 구성요인 중 어떤 요인이 기업이나 학습자에게 가장 큰 효과를 가져다주는지를 밝히기 위한 연구는 현실적으로 상당히 중요하며 의미 있는 연구로 받아들여진다. 본 연구는 멀티미디어 정보시스템을 이용한 기업체 교육훈련의 효과요인을 도출하기 위하여 문헌연구와 실증적 연구를 병행 수행하였다. 우선 멀티미디어 정보시스템에 관한 문헌연구를 통하여 멀티미디어를 이용한 교육의 22가지 효과항목을 도출하였다. 다음으로 멀티미디어 정보시스템을 갖추고 있는 국내 5대 재벌 그룹연수원의 멀티미디어 교육실에서 교육을 받은 517명의 기업체 사원들을 대상으로 약 2개월간 설문조사를 실시하여 자료를 수집하고, 통계분석 패키지를 이용하여 자료를 분석하였다. 방식을 결합한 하이브리드 형태이다.인터넷으로 주문처리하고, 신속 안전한 배달을 기대한다. 더불어 고객은 현재 자신의 물건이 배달되는 경로를 알고싶어 한다. 웹을 통해 물건을 주문한 고객이 자신이 물건의 배달 상황을 웹에서 모니터링 한다면 기업은 고객으로 공간적인 제약으로 인한 불신을 불식시키는 신뢰감을 주게 된다. 이러한 고객서비스 향상과 물류비용 절감은 사이버 쇼핑몰이 전국 어디서나 우리의 안방에서 자연스럽게 점할 수 있는 상황을 만들 것이다.SP가 도입되어, 설계업무를 지원하기위한 기본적인 시스템 구조를 구상하게 된다. 이와 함께 IT Model을 구성하게 되는데, 객체지향적 접근 방법으로 Model을 생성하고 UML(Unified Modeling Language)을 Tool로 사용한다. 단계 4)는 Software Engineering 관점으로 접근한다. 이는 최종산물이라고 볼 수 있는 설계업무 지원 시스템을 Design하는 과정으로, 시스템에 사용될 데이터를 Design하는 과정과, 데이터를 기반으로 한 기능을 Design하는 과정으로 나눈다. 이를 통해 생성된 Model에 따라 최종적으로 Coding을 통하여 실제 시스템을 구축하게 된다.the making. program and policy decision making, The objectives of the study are to develop the methodology of modeling the socioeconomic evaluation, and build up the practical socioeconomic evaluation model of the HAN projec

  • PDF

인도네시아 찌상쿠이강 유역의 지능형 물관리 시스템 적용 연구 (Study for implementation of smart water management system on Cisangkuy river basin in Indonesia)

  • 김유진;고익환;김태원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.469-469
    • /
    • 2017
  • 기후 변화 및 환경오염으로 인하여 물부족 국가가 세계적으로 증가하고 있는 추세이며, 특히 집중형 강우의 형태가 많아짐에 따라 홍수피해 및 상수공급의 문제가 사회적으로 큰 이슈가 되고 있다. 최근 20여 년간의 급속한 경제성장과 도시화 과정에서 인도네시아는 인구와 산업의 과도한 도시집중으로 지난 1960-80년대 한국이 산업화 과정에서 겪었던 것보다 훨씬 심각한 환경문제에 직면하고 있으며, 자카르타와 반둥을 포함하는 광역 수도권 지역의 물 부족과 수질 오염, 환경문제가 이미 매우 위험한 수준에 도달하고 있는 실정이다. 특히, 찌따룸강 중상류에 위치한 인도네시아 3대 도시인 반둥시는 고질적인 용수부족 문제를 겪고 있다. 2010년 현재 약 일평균 15 CMS의 용수가 부족한 상황이며, 2030년에는 지속적인 인구증가로 약 23 CMS의 용수가 추가로 더 필요한 것으로 전망된다. 이러한 용수공급 문제 해결을 위해 반둥시 및 찌따룸강 유역관리청은 댐 및 지하수 개발, 유역 간 물이동 등의 구조적인 대책뿐만 아니라 비구조적인 대책으로써 기존 및 신규 저수지 연계운영을 통한 용수이용의 효율성을 높이는 방안을 모색하고 있다. 이에 따라 본 연구에서는 해당유역의 용수공급 부족 문제를 해소할 수 있는 비구조적인 대책의 일환으로써 다양한 댐 및 보, 소수력 발전, 취수장 등 유역 내 수리 시설물의 운영 최적화를 위한 지능형 물관리 시스템 적용 방안을 제시하고자 한다. 본 연구의 지능형 물관리 시스템은 센서 및 사물 인터넷(Internet of Things, IoT), 네트워크 기술을 바탕으로 시설물 및 운영자, 유관기관 간의 양방향 통신을 통해 유기적인 상호연계 체계를 제공 할 수 있다. 또한 유역의 수문상황과 시설물의 운영현황, 용수공급 및 수요 현황을 실시간으로 확인함으로써 수요에 따른 즉각적인 용수공급량의 조절이 가능하다. 또한, 빅데이터 분석 및 기계학습(Machine Learning)을 통해 개별 물관리 시설물에 대한 최적 운영룰을 업데이트할 수 있으며, 유역의 수문상황과 용수 수요 현황을 고려하여 최적의 용수공급 우선순위를 선정할 수 있다. 지능형 물관리 시스템 개발의 목적은 찌상쿠이 유역의 수문현황을 실시간으로 모니터링하고, 하천시설물의 운영을 분석하여 최적의 용수공급 및 배분을 통해 유역의 수자원 활용 효율성을 향상시키는 데 있다. 이를 위해 수문자료의 수집체계를 구축하고 기관간 정보공유체계를 수립함으로써 분석을 위한 기반 인프라를 구성하며, 이를 기반으로 유역 유출을 비롯한 저수지 운영, 물수지 분석을 수행하고, 분석 및 예측결과, 과거 운영 자료를 토대로 새로운 물관리 시설 운영룰 및 시설물 간 연계운영 방안, 용수공급 우선순위 의사결정 등을 지원하고자 한다. 본 연구의 지능형 물관리 시스템은 통합 DB를 기반으로 수리수문 현상의 모의 분석을 통해 하천 시설물 운영의 합리적 기준을 제시함으로써 다양한 관리주체들의 시설물운영에 대한 이견 및 분쟁을 해소하고, 한정된 수자원과 다양한 수요 간의 효율적이고 합리적인 분배 및 시설물 운영문제를 해결하기 위한 의사결정도구로써 활용할 수 있을 것으로 기대된다.

  • PDF

Relational Database SQL Test Auto-scoring System

  • Hur, Tai-Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권11호
    • /
    • pp.127-133
    • /
    • 2019
  • 오늘날 데이터 처리에 있어 가장 보편적인 언어가 SQL이다. 이를 위해 SQL 교육이 대학에서 진행되고 있다. 따라서 이번 연구에서는 SQL교육의 학습효과를 극대화하기 위한 SQL의 퀴즈 자동 채점 시스템을 제안한다. 본 시스템은 SQL 퀴즈의 자동 채점을 위해 데이터베이스관리시스템을 활용한 알고리즘을 이용하였으며, 만족할 만한 결과를 도출하였다. 본 시스템을 위해 학사관리, 인사관리 데이터베이스에 대해 학사관리의 문제로 문제 은행을 구축하고, 사용자에게 매번 다른 문제를 제공할 수 있도록 하였다. 채점은 테이블에 변화가 없는 검색과 테이블이 변화하는 수정, 삽입, 삭제로 나누어 처리하였다. 검색의 경우 정답과 응답을 실행한 후 실행 결과를 비교하여 처리하였으며, 수정, 삽입, 삭제는 정답과 오답을 실행한 후 테이블을 검색하여 비교함으로써 정답을 확인하도록 하였다. 수정, 삽입, 삭제는 테이블이 변화하였으므로 트랜젝션(transaction) 제어어인 ROLLBACK 명령어를 이용하여 데이터를 원래대로 복원하였다. 본 시스템을 구현하고, 우리대학 컴퓨터정보과 2학년 88명을 대상으로 772회 시행하였다. 시행결과 1회 10문항으로 구성된 시험에 대한 평균 채점 소요시간은 0.052초로 매우 효과적인 것으로 나타났으며, 채점관의 경우 동시에 여러개의 응답을 동시에 처리할 수 없음을 고려한다면 본 시스템의 성능이 월등함을 확인하였다. 향후 정답율을 기초로 문제 난이도를 고려한 문제 시스템으로 발전시키고자 한다.

부분 단어 토큰화 기법을 이용한 뉴스 기사 정치적 편향성 자동 분류 및 어휘 분석 (Automatic Classification and Vocabulary Analysis of Political Bias in News Articles by Using Subword Tokenization)

  • 조단비;이현영;정원섭;강승식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2021
  • 뉴스 기사의 정치 분야는 보수, 진보와 같이 양극화된 편향적 특성이 존재하며 이를 정치적 편향성이라고 한다. 뉴스 기사로부터 편향성 문제를 분류하기 위해 키워드 기반의 학습 데이터를 구축하였다. 대부분의 임베딩 연구에서는 미등록어로 인한 문제를 완화시키기 위해 형태소 단위로 문장을 구성한다. 본 논문에서는 문장을 언어 모델에 의해 세부적으로 분할하는 부분 단어로 문장을 구성할 경우 미등록어 수가 감소할 것이라 예상하였다. 부분 단어 토큰화 기법을 이용한 문서 임베딩 모델을 제안하며 이를 SVM과 전방향 뉴럴 네트워크 구조에 적용하여 정치적 편향성 분류 실험을 진행하였다. 형태소 토큰화 기법을 이용한 문서 임베딩 모델과 비교 실험한 결과, 부분 단어 토큰화 기법을 이용한 문서 임베딩 모델이 78.22%로 가장 높은 정확도를 보였으며 부분 단어 토큰화를 통해 미등록어 수가 감소되는 것을 확인하였다. 분류 실험에서 가장 성능이 좋은 임베딩 모델을 이용하여 정치적 인물을 기반한 어휘를 추출하였으며 각 성향의 정치적 인물 벡터와의 평균 유사도를 통해 어휘의 편향성을 검증하였다.

알려지지 않은 위협 탐지를 위한 CBA와 OCSVM 기반 하이브리드 침입 탐지 시스템 (A hybrid intrusion detection system based on CBA and OCSVM for unknown threat detection)

  • 신건윤;김동욱;윤지영;김상수;한명묵
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.27-35
    • /
    • 2021
  • 인터넷이 발달함에 따라, IoT, 클라우드 등과 같은 다양한 IT 기술들이 개발되었고, 이러한 기술들을 사용하여 국가와 여러 기업들에서는 다양한 시스템을 구축하였다. 해당 시스템들은 방대한 양의 데이터들을 생성하고, 공유하기 때문에 시스템에 들어있는 중요한 데이터들을 보호하기 위해 위협을 탐지할 수 있는 다양한 시스템이 필요하였으며, 이에 대한 연구가 현재까지 활발히 진행되고 있다. 대표적인 기술로 이상 탐지와 오용 탐지를 들 수 있으며, 해당 기술들은 기존에 알려진 위협이나 정상과는 다른 행동을 보이는 위협들을 탐지한다. 하지만 IT 기술이 발전함에 따라 시스템을 위협하는 기술들도 점차 발전되고 있으며, 이러한 탐지 방법들을 피해서 위협을 가한다. 지능형 지속 위협(Advanced Persistent Threat : APT)은 국가 또는 기업의 시스템을 공격하여 중요 정보 탈취 및 시스템 다운 등의 공격을 수행하며, 이러한 공격에는 기존에 알려지지 않았던 악성코드 및 공격 기술들을 적용한 위협이 존재한다. 따라서 본 논문에서는 알려지지 않은 위협을 탐지하기 위한 이상 탐지와 오용 탐지를 결합한 하이브리드 침입 탐지 시스템을 제안한다. 두 가지 탐지 기술을 적용하여 알려진 위협과 알려지지 않은 위협에 대한 탐지가 가능하게 하였으며, 기계학습을 적용함으로써 보다 정확한 위협 탐지가 가능하게 된다. 오용 탐지에서는 Classification based on Association Rule(CBA)를 적용하여 알려진 위협에 대한 규칙을 생성하였으며, 이상 탐지에서는 One Class SVM(OCSVM)을 사용하여 알려지지 않은 위협을 탐지하였다. 실험 결과, 알려지지 않은 위협 탐지 정확도는 약 94%로 나타난 것을 확인하였고, 하이브리드 침입 탐지를 통해 알려지지 않은 위협을 탐지 할 수 있는 것을 확인하였다.

무인카메라 기반 산악지역 식물계절 및 적설 탐지 기술 개발 (Development of Plant Phenology and Snow Cover Detection Technique in Mountains using Internet Protocol Camera System)

  • 장근창;김재철;천정화;장석일;안치현;김봉철
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.318-329
    • /
    • 2022
  • 본 연구를 통해 설계된 테스트베드 지역의 식물계절 관측과 적설 탐지는 반복 이미지 학습 및 정량적 RGB 분석을 통해 정확도 높은 산림 식물계절 및 적설 관측 기반을 마련하였다. 무인카메라 기반 식물계절 및 적설 탐지 기술 개발은 복잡한 산악지형이라는 특수한 환경에서 다양한 고도의 환경 데이터를 실시간 수집하는 체계를 구축함으로써 산림환경 연구를 위한 기초 데이터를 수집하는 계기가 되었다. 첨단기술을 활용한 주요 산악지역의 식물계절 변화 탐지 연구는 산림청에서 제공하는 개화 및 개엽 예측 정보의 검증과 산림휴양쾌적지수 고도화 등에 활용 가능하며, 향후 농림위성의 NDVI 등 영상 이미지의 검⋅보정용 자료로써 활용 가치가 매우 높다. 무인카메라 활용 기술은 산림 식물계절 및 적설 탐지뿐만 아니라 산림재해 감시 및 산림관리 등 다양한 산림분야에서도 활용될 수 있을 것으로 기대된다.

미세 유동채널의 전기화학적 가공 파라미터 최적화를 위한 어닐링 시뮬레이션에 근거한 인공 뉴럴 네트워크에 관한 연구 (Research on ANN based on Simulated Annealing in Parameter Optimization of Micro-scaled Flow Channels Electrochemical Machining)

  • 민병원
    • 사물인터넷융복합논문지
    • /
    • 제9권3호
    • /
    • pp.93-98
    • /
    • 2023
  • 논문에서는 어닐링 시뮬레이션에 근거한 인공 뉴럴 네트워크를 구축한다. 미세 유동채널의 전기화학적 가공 파라미터와 채널 형태 간의 매핑은 샘플의 학습에 의하여 이루어진다. 스텐리스강 표면에 대한 미세 유동채널의 전기화학적 가공의 깊이와 넓이가 예측되고, 형성된 네트워크 모델을 입증하기 위한 NaNO3 해 내부의 펄스 전원공급기와 함께 유동채널의 실험이 진행된다. 결과적으로, "4-7-2" 구조를 갖는 인공 뉴럴 네트워크에 의한 어닐링 시뮬레이션으로 예측된 채널의 깊이와 넓이는 실험값에 매우 근접한다. 그 오차는 5.3% 미만이다. 예측된 데이터와 실험 데이터는 전기화학적 가공 과정에서의 에칭 규격이 전압 및 전류의 밀도와 매우 밀접한 관계가 있음을 보여준다. 전압이 5V보다 작을 때에는 채널 내에 "작은 섬"이 형성된다; 반면에 전압이 40V보다 클 때에는 채널의 측면 에칭이 비교적 크고 채널 사이의 "댐"은 사라지게 된다. 전압이 25V일 때 채널의 가공 형태는 최적이 된다.

Establishment of a deep learning-based defect classification system for optimizing textile manufacturing equipment

  • YuLim Kim;Jaeil Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.27-35
    • /
    • 2023
  • 본 논문에서는 복합소재 생산 분야에서 수요가 높은 프리프레그 섬유 제조 공정에 딥러닝 기반의 결함 검출 및 분류 시스템을 적용하여 생산성을 높이는 과정을 제안한다. 다양한 조건별 다량의 불량 발생으로 해결방안이 필요한 토우 프리프레그 제조 장비에 적용하기 위해 우선 결함 감지와 분류 모델 제작에 필요한 카메라 및 조명을 선정하여 최적의 환경을 구축하였다. 그리고 다중 분류 모델 제작에 필요한 데이터를 수집하고 정상 및 불량 조건에 따라 라벨링을 진행하였다. 다중 분류 모델은 CNN 기반으로 제작하였으며 VGGNet과 MobileNet, ResNet 등의 사전 학습모델을 적용하여 성능을 비교하고 정확도 및 손실 그래프로 개선 방향을 파악한다. 주요 문제로 과적합 문제를 확인하여 개선하기 위해 데이터 증강 및 Dropout 기법을 적용하여 보완하였다. 모델에 대한 성능 평가를 위해 혼돈행렬을 성능지표로 한 성능 평가를 진행하였으며 99% 이상의 성능을 확인하였다. 또한, 실제 공정에 적용하여 실시간 획득된 이미지에 대한 분류 결과를 확인해보며 판별 값이 정확히 도출되는지 확인한다.

담수 유해남조 세포수·대사물질 농도 예측을 위한 머신러닝과 딥러닝 모델링 연구동향: 알고리즘, 입력변수 및 학습 데이터 수 비교 (Machine- and Deep Learning Modelling Trends for Predicting Harmful Cyanobacterial Cells and Associated Metabolites Concentration in Inland Freshwaters: Comparison of Algorithms, Input Variables, and Learning Data Number)

  • 박용은;김진휘;이한규;변서현;황순진;신재기
    • 생태와환경
    • /
    • 제56권3호
    • /
    • pp.268-279
    • /
    • 2023
  • 근래에 들어, 머신러닝과 딥러닝 모델은 다양한 수체 내 수질변화를 예측하기 위해 광범위하게 사용되고 있다. 특히, 담수호의 물 이용과 수생태계 건강성에 위협 요인으로 작용할 수 있는 유해남조의 발생을 예측하기 위해 많은 연구자들이 인공지능 모델을 활용하고 있다. 따라서, 본 연구에서는 최근까지 유해남조의 발생을 예측하기 위해 적용된 인공지능 모델링의 선행 연구들을 검토하였고, 딥러닝을 포함하여 머신러닝 모델을 이용한 이 분야 연구의 발전방향을 모색하고자 하였다. 먼저, Elsevier의 초록 인용 데이터베이스인 Scopus를 활용하여 체계적인 문헌 연구를 수행하였다. 주요 키워드를 이용하여 탐색 및 정리된 문헌들을 리뷰한 결과, 딥러닝 모델은 주로 남조 세포수 예측에만 사용되었고, 머신러닝 모델은 남조 세포수 이외에 microcystin, geosmin, 2-MIB와 같은 대사물질 예측에도 초점을 맞추고 있었다. 또한, 남조 세포수와 대사물질의 예측을 위해 활용된 입력변수들은 현저한 차이가 있었다. 남조의 대사물질을 예측하기 위해 딥러닝 모델이 적용된 바가 없었는데, 향후 빅데이터 구축을 통한 대사물질을 예측하는 연구가 필요할 것으로 사료된다.

YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법 (Estimation of fruit number of apple tree based on YOLOv5 and regression model)

  • 곽희진;정윤주;전익조;이철희
    • 전기전자학회논문지
    • /
    • 제28권2호
    • /
    • pp.150-157
    • /
    • 2024
  • 본 논문은 딥러닝 기반 객체 탐지 모델과 다항 회귀모델을 이용하여 사과나무에 열린 사과의 개수를 예측할 수 있는 새로운 알고리즘을 제안한다. 사과나무에 열린 사과의 개수를 측정하면 사과 생산량을 예측할 수 있고, 농산물 재해 보험금 산정을 위한 손실을 평가하는 데에도 활용할 수 있다. 사과 착과량 측정을 위해 사과나무의 앞면과 뒷면을 촬영하였다. 촬영된 사진에서 사과를 식별하여 라벨링한 데이터 세트를 구축하였고, 이 데이터 세트를 활용하여 1단계 객체 탐지 방식의 CNN 모델을 학습시켰다. 그런데 사과나무에서 사과가 나뭇잎, 가지 등으로 가려진 경우 영상에 포착되지 않아 영상 인식 기반의 딥러닝 모델이 해당 사과를 인식하거나 추론하는 것이 어렵다. 이 문제를 해결하기 위해, 우리는 두 단계로 이루어진 추론 과정을 제안한다. 첫 번째 단계에서는 영상 기반 딥러닝 모델을 사용하여 사과나무의 양쪽에서 촬영한 사진에서 각각의 사과 개수를 측정한다. 두 번째 단계에서는 딥러닝 모델로 측정한 사과 개수의 합을 독립변수로, 사람이 실제로 과수원을 방문하여 카운트한 사과 개수를 종속변수로 설정하여 다항 회귀 분석을 수행한다. 본 논문에서 제안하는 2단계 추론 시스템의 성능 평가 결과, 각 사과나무에서 사과 개수를 측정하는 평균 정확도가 90.98%로 나타났다. 따라서 제안된 방법은 수작업으로 사과의 개수를 측정하는 데 드는 시간과 비용을 크게 절감할 수 있다. 또한, 이 방법은 딥러닝 기반 착과량 예측의 새로운 기반 기술로 관련 분야에서 널리 활용될 수 있을 것이다.