• 제목/요약/키워드: 학습과 정보이용

검색결과 5,956건 처리시간 0.035초

정보인식 유형과 인수분해 학습방법 -대수막대와 공식 활용을 중심으로- (Information recognition style and Learning method for factorization - Focusing on algeblocks and formula application -)

  • 전미혜;황우형
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제29권1호
    • /
    • pp.111-130
    • /
    • 2015
  • 본 연구는 수학학습양식(백희수, 2009) 요인 중 인지적 학습양식의 정보인식 유형에 따라 학습자를 시각적 학습자와 언어적 학습자로 구분한 뒤, 각 유형의 학습자들이 인수분해 학습에서 개념을 이해하고 문제를 해결하며 일정한 시간이 지난 뒤 학습방법을 기억하는 데 어떤 차이가 있는지 알아보기 위해 수행되었다. 인수분해 교수-학습방법으로는 대수막대와 공식을 활용하였으며, 시각적/언어적 학습양식을 알아보는 두 가지의 검사지를 이용하여 중학교 2학년 학습자 116명(남 74, 여 42)을 대상으로 정보인식 유형을 조사하고, 두 검사지의 결과가 모두 동일한 양식으로 나온 학습자를 각 유형별로 2명씩 선정하였다. 이들을 대상으로 사전 인터뷰와 진단평가를 실시하고, 1차시의 준비학습과 5차시의 본 수업을 실행하였으며, 모든 수업을 마친 뒤 1차 사후 인터뷰를 실시하였고 일정한 시간이 지난 뒤에는 형성평가와 2차 사후 인터뷰를 실시하였다. 본 연구에서 수집된 자료를 분석함으로써 얻어진 결과를 통해 정보인식 유형에 따라 학습자마다 기억하거나 사용하는 학습방법에 차이가 있다는 것을 확인할 수 있었으며, 시각적 학습자는 시각적이고 구체적인 조작방법을, 언어적 학습자는 언어적이고 형식적인 조작방법을 더 잘 기억하고 사용한다는 것을 알 수 있었다. 따라서 방정식과 함수를 포함하는 수학의 여러 분야에서 중요하게 이용되는 인수분해 학습에서 학습 효과를 향상시키기 위해서는 정보인식 유형이 다른 학생들을 고려하여 대수막대와 공식을 활용한 교수-학습방법이 적절히 이루어져야 한다고 제안하였다.

SVM 기반의 재무 정보를 이용한 주가 예측 (SVM based Stock Price Forecasting Using Financial Statements)

  • 허준영;양진용
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권3호
    • /
    • pp.167-172
    • /
    • 2015
  • 기계 학습은 컴퓨터를 학습시켜 분류나 예측에 사용되는 기술이다. 그 중 SVM은 빠르고 신뢰할 만한 기계 학습 방법으로 분류나 예측에 널리 사용되고 있다. 본 논문에서는 재무 정보를 기반으로 SVM을 이용하여 주식 가격의 예측력을 검증한다. 이를 통해 회사의 내재 가치를 나타내는 재무정보가 주식 가격 예측에 얼마나 효과적인지를 평가할 수 있다. 회사 재무 정보를 SVM의 입력으로 하여 주가의 상승이나 하락 여부를 예측한다. 다른 기법과의 비교를 위해 전문가 점수와 기계 학습방법인 인공신경망, 결정트리, 적응형부스팅을 통한 예측 결과와 비교하였다. 비교 결과 SVM의 성능이 실행 시간이나 예측력면에서 모두 우수하였다.

지능형 에이전트의 환경 적응성 및 확장성 (A study on environmental adaptation and expansion of intelligent agent)

  • 백혜정;박영택
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.795-802
    • /
    • 2003
  • 로봇이나 가상 캐릭터와 같은 지능형 에이전트가 자율적으로 살아가기 위해서는 주어진 환경을 인식하고, 그에 맞는 최적의 행동을 선택하는 능력을 가지고 있어야 한다. 본 논문은 이러한 지능형 에이전트를 구현하기 위하여, 외부 환경에 적응하면서 최적의 행동을 배우고 선택하는 방법을 연구하였다. 본 논문에서 제안한 방식은 강화 학습을 이용한 행동기반 학습 방법과 기호 학습을 이용한 인지 학습 방법을 통합한 방식으로 다음과 같은 특징을 가진다. 첫째, 강화 학습을 이용하여 환경에 대한 적응성을 학습함으로 지능형 에이전트가 변화하는 환경에 대한 유연성을 가지도록 하였다. 둘째, 귀납적 기계학습과 연관 규칙을 이용하여 규칙을 추출하여 에이전트의 목적에 맞는 환경 요인을 학습함으로 주어진 환경에서 보다 빠르게, 확장된 환경에서 보다 효율적으로 행동을 선택을 하도록 하였다. 셋째, 본 논문은 지능형 에이전트를 구현하는데 있어서 처음부터 모든 상태를 고려하기 보다 상태 탐지기를 이용하여 새로운 상태가 입력될 때마다 상태를 확장시키는 방식을 이용하였다. 이러한 방식은 필요한 상태에 대하여서만 고려함으로 메모리를 획기적으로 축소 할 수 있으며, 새로운 상태를 동적으로 처리 할 수 있어, 환경에 대한 변화에 능동적으로 대처 할 수 있다.

지도 경험을 활용한 다계층 퍼셉트론의 순차적 학습 방법 (Utilizing Experiences of Supervisor in Sequential Learning for Multilayer Perceptron)

  • 이재영;김황수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권10호
    • /
    • pp.723-735
    • /
    • 2010
  • 학습 수준의 평가와 수준에 맞는 지식의 제공은 인간의 학습 과정에 많은 영향을 준다. 이것은 학습 순서가 중요하다는 것을 말하고 있으며, 기계 학습에서도 학습 순서를 고려할 필요가 있다. 본 연구는 학습 순서가 학습에 미치는 영향을 알아보기 위해, MLP의 학습에서 지도자의 경험을 이용하여 학습순서를 제어하는 방법을 제안한다. 지도 경험과 평가를 이용하여 MLP의 상태를 파악하고, 현 상태에서 학습 효율이 좋을 것으로 예상되는 학습 자료를 선택하여 학습을 시킨다. 지도자의 경험을 표현하고 활용하기 위해 CRF(Conditional Random Fields)를 이용하였다. 제안한 방법은 학습 자료를 선택한다는 점에서 능동 학습(Active Learning)과 유사하지만, 학습 순서를 제시하기 위한 자료의 선택이란 점에서 능동학습과는 차이가 있다. 분류 문제에 대하여 실험해 본 결과, 순서의 제어가 없는 학습의 경우에 비하여 학습 횟수의 측면에서 일반적으로 더 나은 학습 성능을 보여준다.

금융데이터의 성능 비교를 통한 연합학습 기법의 효용성 분석 (Utility Analysis of Federated Learning Techniques through Comparison of Financial Data Performance)

  • 장진혁;안윤수;최대선
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.405-416
    • /
    • 2022
  • AI기술은 데이터 기반의 기계학습을 이용하여 삶의 질을 높여주고 있다. 기계학습을 이용시, 분산된 데이터를 전송해 한곳에 모으는 작업은 프라이버시 침해가 발생할 위험성이 있어 비식별화 과정을 거친다. 비식별화 데이터는 정보의 손상, 누락이 있어 기계학 습과정의 성능을 저하시키며 전처리과정을 복잡하게한다. 이에 구글이 2017년에 데이터의 비식별화와 데이터를 한 서버로 모으는 과정없이 학습하는 방법인 연합학습을 발표했다. 본 논문은 실제 금융데이터를 이용하여, K익명성, 차분프라이버시 재현데이터의 비식별과정을 거친 데이터의 학습성능과 연합학습의 성능간의 차이를 비교하여 효용성을 분석하였으며, 이를 통해 연합학습의 우수성을 보여주고자 한다. 실험결과 원본데이터 학습의 정확도는 91% K-익명성을 거친 데이터학습은 k=2일 때 정확도 79%, k=5일 때76%, k=7일 때 62%, 차분프라이버시를 사용한 데이터학습은 𝜖=2일 때 정확도 52%, 𝜖=1일 때 50%, 𝜖=0.1일 때 36% 재현데이터는 정확도 82%가 나왔으며 연합학습의 정확도는 86%로 두번째로 높은 성능을 보여 주었다.

스팸성 자질과 URL 자질의 공동 학습을 이용한 최대 엔트로피 기반 스팸메일 필터 시스템 (A Spam Filter System Based on Maximum Entropy Model Using Co-training with Spamminess Features and URL Features)

  • 공미경;이경순
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.61-68
    • /
    • 2008
  • 본 논문에서는 스팸메일에 나타나는 스팸성 자질과 URL 자질의 공동 학습을 이용한 최대엔트로피모델 기반 스팸 필터 시스템을 제안한다. 스팸성 자질은 스패머들이 스팸메일에 인위적으로 넣는 강조 패턴이나 필터 시스템을 통과하기 위해 비정상적으로 변형시킨 단어들을 말한다. 스팸성 자질 외에 반복적으로 나타나는 URL과 비정상적인 URL도 자질로 사용하였다. 메일에 나타난 정상적인 URL과 필터 시스템을 피하기 위해 변형된 비정상적인 URL들이 스팸 메일을 걸러내는데 도움을 줄 수 있기 때문이다. 또한 스팸성 자질과 URL자질을 이용한 공동 학습을 하였다. 공동 학습은 학습 과정에서 두 자질을 독립적으로 이용한 비지도 학습 방법으로 정답을 모르는 문서를 이용할 수 있다는 장점을 갖는다. 실험을 통해 스팸성 자질과 URL을 이용함으로써 스팸 필터 시스템의 성능을 향상시킬 수 있음을 확인하였으며 두 자질 집합을 이용한 공동 학습이 필요한 학습 문서의 수를 감소시키면서, 정확도는 일괄 학습 정확도에 근접한다는 것을 확인하였다.

기계학습을 이용한 방화벽 로그분석에 관한 연구 (Research Regarding the Fire-Wall log Analysis which users Machine Learning)

  • 김대중
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.1169-1171
    • /
    • 2007
  • 인터넷 사용의 증가 및 정보보호에 대한 의식의 증가로 인하여 누가, 언제, 어떻게 해당 사이트를 이용 하였는가 뿐만 아니라 어떤 침해 사고를 일으키고 있느냐에 대한 이슈도 증가하고 있다. 따라서 본 논문에서는 방화벽 원시로그를 기계학습기법을 이용하여 보다 빠르게 방화벽 원시로그의 침해사고에 대한 지능형 모델을 제안한다.

퍼지 추론과 개선된 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식

  • 주이환;김재용;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.195-202
    • /
    • 2004
  • 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화 한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자의 인식은 개선된 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었고 기존의 퍼지 RBF 네트워크 보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 우수함을 확인하였다.

  • PDF

반응형 에이전트의 효과적인 물체 추적을 위한 베이지 안 추론과 강화학습의 결합 (Hybrid of Reinforcement Learning and Bayesian Inference for Effective Target Tracking of Reactive Agents)

  • 민현정;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.94-96
    • /
    • 2004
  • 에이전트의 '물체 따라가기'는 전통적으로 자동운전이나 가이드 등의 다양한 서비스를 제공할 수 있는 기본적인 기능이다. 여러 가지 물체가 있는 환경에서 '물체 따라가기'를 하기 위해서는 목적하는 대상이 어디에 있는지 찾을 수 있어야 하며, 실제 환경에는 사람이나 차와 같이 움직이는 물체들이 존재하기 때문에 다른 물체들을 피할 수 있어야 한다. 그런데 에이전트의 최적화된 피하기 행동은 장애물의 모양과 크기에 따라 다르게 생성될 수 있다. 본 논문에서는 다양한 모양과 크기의 장애물이 있는 환경에서 최적의 피하기 행동을 생성하면서 물체를 추적하기 위해 반응형 에이전트의 행동선택을 강화학습 한다. 여기에서 정확하게 상태를 인식하기 위하여 상태를 추론하고 목표물과 일정거리를 유지하기 위해 베이지안 추론을 이용한다 베이지안 추론은 센서정보를 이용해 확률 테이블을 생성하고 가장 유력한 상황을 추론하는데 적합한 방법이고, 강화학습은 실시간으로 장애물 종류에 따른 상태에서 최적화된 행동을 생성하도록 평가함수를 제공하기 때문에 베이지안 추론과 강화학습의 결합모델로 장애물에 따른 최적의 피하기 행동을 생성할 수 있다. Webot을 이용한 시뮬레이션을 통하여 다양한 물체가 존재하는 환경에서 목적하는 대상을 따라가면서 이종의 움직이는 장애물을 최적화된 방법으로 피할 수 있음을 확인하였다.

  • PDF

CTC Ratio Scheduling을 이용한 Joint CTC/Attention 한국어 음성인식 (Joint CTC/Attention Korean ASR with CTC Ratio Scheduling)

  • 문영기;조용래;조원익;조근식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.37-41
    • /
    • 2020
  • 본 논문에서는 Joint CTC/Attention 모델에 CTC ratio scheduling을 이용한 end-to-end 한국어 음성인식을 연구하였다. Joint CTC/Attention은 CTC와 attention의 장점을 결합한 모델로서 attention, CTC 단일 모델보다 좋은 성능을 보여주지만, 학습이 진행될수록 CTC가 attention의 학습을 저해하는 요인이 된다. 본 논문에서는 이러한 문제를 해결하기 위해, 학습 진행에 따라 CTC의 비율(ratio)를 줄여나가는 CTC ratio scheduling 방법을 제안한다. CTC ratio scheduling를 이용하여 학습한 결과물은 기존 Joint CTC/Attention, 단일 attention 모델 대비 좋은 성능을 보여주는 것을 확인하였다.

  • PDF