최근 스마트 컴퓨팅 시대를 맞아 스마트 러닝 시스템에 대한 관심도가 급증하고 있다. 스마트 러닝의 개념은 크게 2가지로 스마트 단말기를 이용한 학습 방법과 학습을 위한 스마트 학습 기법으로 나누어 볼 수 있다. 스마트 학습 기법은 학습자에게 좀 더 효율적이면서 학습의 효과를 증대시키기 위해 학습자의 성향과 학습자의 프로파일, 학습 상황 등을 인지하여 분석하고 적용할 수 있는 기법을 말한다. 본 논문에서는 학습자에게 스마트 러닝을 위한 스마트 학습 기법을 적용한 시스템 설계를 제안하고자 한다. 본 연구에서 제안하고 있는 스마트 러닝 시스템은 학습자에게 적합한 교수학습 모형을 자동으로 적용하여 학습의 효과를 극대화하고, 학습의 유형과 학습 패턴의 변화에 따라 시스템이 학습자에게 지능적으로 대처할 수 있도록 하는 것이다. 교수학습 모형이 학습자에게 자동변화 되기 위해서는 학습자의 성향분석 그리고 형성평가, 사후평가 등의 데이터 분석을 수집하고 자동으로 분석하여 적용 할 수 있는 스마트 학습 에이전트(SSA:Smart Study Agent)가 필요하다. 따라서 본 논문에서는 SSA 설계를 기반으로 스마트 러닝 시스템의 필요성과 향후 연구 발전에 따른 이러닝(e-learning) 교육 혁신에 기여하고자 한다.
Yun, Jeongrok;Chun, Sungkuk;Kim, Hoemin;Kim, Un Yong
Proceedings of the Korean Society of Computer Information Conference
/
2019.07a
/
pp.317-318
/
2019
가상/증강현실로 대표되는 공간정보 기반 실감형 콘텐츠에 대한 관심이 증대되면서 객체인식 등의 지능형 공간인지 기술에 대한 연구가 활발히 진행되고 있다. 특히 HMD등의 영상 시각화 장치의 발달 및 5G 통신기술의 출현으로 인해 실시간 대용량 영상정보의 송, 수신 및 가시화 처리 기술의 기반이 구축됨에 따라, $360^{\circ}$ 스트리밍 영상정보 처리와 같은 고자유도 콘텐츠를 위한 관련 연구의 필요성이 증대되고 있다. 하지만 지능형 영상정보 처리의 대표적 연구인 딥 러닝(Deep Learning) 기반 객체 인식 기술의 경우 대부분 일반적인 평면 영상(Planar Image)에 대한 처리를 다루고 있고, 파노라마 영상(Panorama Image) 특히, $360^{\circ}$ 스트리밍 영상 처리를 위한 연구는 미비한 상황이다. 본 논문에서는 딥 러닝을 이용하여 $360^{\circ}$ 스트리밍 영상에서의 객체인식 연구 방법에 대해 서술한다. 이를 위해 $360^{\circ}$ 카메라 영상에서 딥 러닝을 위한 학습 데이터를 획득하고, 실시간 객체 인식이 가능한 YOLO(You Only Look Once)기법을 이용하여 학습을 한다. 실험 결과에서는 학습 데이터를 이용하여 $360^{\circ}$영상에서 객체 인식 결과와, 학습 횟수에 따른 객체 인식에 대한 결과를 보여준다.
웹 기술 기반의 컨텐츠 개발 및 운영으로 다른 환경에서의 컨텐츠 활용을 토대로 교육자원의 정보들을 통합 운영할 수 있는 관리 중심체인 e-learning 시스템의 중요성과 필요성이 대두되고 있으며, 교육용 어플리케이션은 현재 표준화되지 않은 개발 프로세스를 기반하여 개발하고 있는 실정이다. 따라서, 교육 컨텐츠의 재사용을 높이기 위해 국제적 학습 표준인 SCORM (Sharable Content Object Reference Model)을 기반으로 하나의 플랫폼에 있어서 시스템 개발 중 다른 플랫폼으로의 재사용이 가능한 핵심자산을 이용하여 조립, 생산할 수 있는 방안으로 체계적인 교육자원을 개발하고 지원하기 위한 교수-학습지원 시스템 개발에 초점을 둔 연구가 요구된다. 따라서, 본 논문에서의 교육적 도메인으로 접근하여 MDA(Model Driven Architecture)상의 교수-학습지원 시스템을 정의한다. 또한 학습컨텐츠 표준 메타데이터를 이용하여 컨텐츠저장소에 관한 분석 및 설계를 하고 MDA 자동화 툴을 이용한 핵심자산을 통해 실제 교수자가 필요로하는 컨텐츠를 제공할 수 있는 교수-학습지원 시스템을 개발하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.646-648
/
2005
인터넷의 급속한 성장과 더불어 사용자들은 인터넷을 통해 많은 정보를 얻을 수 있게 되었으며 최신 뉴스를 실시간으로 접근할 수 있게 되었다. 이에 따라 방대한 정보 속에 사용자 관심사에 맞는 정보를 효과적으로 검색하기 위한 여러 방법들이 연구되어 왔다. 하지만 기존의 많은 선행 연구들은 단어 빈도 기반의 키워드 벡터 모델을 이용하여 사용자의 관심사를 학습하고 있다. 이러한 키워드 벡터 모델은 사용자의 선호도를 명확하게 기술하지 못하고 키워드를 이용한 특징 벡터 (feature-vector)는 개념들 사이의 관계를 찾기 어려운 한계를 가지고 있다. 이를 개선하기 위해 본 논문에선 계층적 개념 인덱싱(Hierarchical Concept Indexing)을 이용한 온톨로지 형태의 개인화된 사용자 프로파일을 만드는 방법을 제안한다. 생성된 사용자 프로파일에 개념 간의 유사도와 개념에 대한 사용자의 관심도를 고려하여 보다 개인의 선호도에 맞는 기사를 제공한다. 실험에서는 제안된 방법의 성능 평가를 위해서 기존의 키워드 벡터 모델의 학습 방법인 WebMate 시스템과 비교 분석하였다. 그 결과 제안하는 방법이 키워드 벡터를 이용한 학습 방법보다 향상된 성능을 보였다.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2002.11a
/
pp.144-146
/
2002
현재 침입탐지 시스템은 인터넷의 확장과 더불어 네트워크 보안을 보장하기 위한 광범위한 수단으로 이용되고 있다. 이러한 탐지 시스템중 신경망의 적용은 분산된 네트워크와 다양한 공격환경하의 오용탐지와 비정상행위 탐지에 좋은 응용이 되고 있다. 본 연구에서는 RBF-신경망을 이용한 침입탐지 시스템이 가지고 있는 단점 중 하나인 학습데이터의 공격과 정상의 비율에 따라 탐지 율의 차이가 큰 것에 착안, 보다 자동화되고 안정된 학습을 위한 데이터 결정 알고리즘을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.404-406
/
2003
행동 기반 인공지능은 기본 행동들의 집합으로부터 적절한 행동을 선택함으로써 복잡한 행동을 하도록 하는 방식이다. 행동 기반 시스템은 1980년대에 시작되어 이제는 많은 에이전트 시스템에 사용되고 있다. 본 논문에서는 기존의 P. Maes가 제안한 행동 선택 네트워크에 Learning Classifier System을 이용한 학습 기능을 부가하여, 변하는 환경에 적절히 적응하여 행동의 시퀀스를 생성할 수 있는 방법을 제안하다. 행동 선택 네트워크는 주어진 문제에 따라 노드 간 연결을 설계자가 미리 설정하도록 하는데, 해결해야 할 문제가 변함에 따라 네트워크에서의 연결 형태가 변형될 필요가 있다. Khepera 로봇을 이용한 시뮬레이션 결과, 행동 선택 네트워크에서의 학습이 유용함을 확인할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2007.06c
/
pp.446-449
/
2007
영상 학습은 컴퓨터를 이용한 자동 시각 검사에서 매우 중요하고 어려운 단계이다. 전자산업과 같이 신제품 개발 주기가 짧고 다양한 제품들을 검사하여야 하는 분야에서 어렵고 복잡한 학습 과정은 큰 문제가 되고 있다. 본 연구에서는 CAD 파일을 이용하여 PCB 자동 시각 시스템의 학습 과정을 손쉽게 할 수 있는 방안을 제시하였다.
다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.210-213
/
2011
기억 인출 단서는 학습을 통해 장기기억 공간에 저장된 정보를 인출하는 과정에서 중요하며, 서로 다른 종류의 기억 인출 단서에 따른 기억 인출 결과 및 이에 대한 인지 학습적 특성 규명은 교육, 범죄 수사, 그리고 인간의 뇌 기능을 모방한 기계학습 연구 등에서 중요하게 다루어져야 할 문제이다. 본 논문에서는 비디오 데이터를 이용하여 학습한 내용을 인출하는 과정에서 텍스트와 이미지가 각각 인출 단서로서 기억인출 결과에 미치는 영향을 분석하고, 기억 정보 및 시각 정보 처리와 관련된 뇌 영역에서의 뇌전도 분석을 이용하여 이를 해석하였다. 실험 결과를 통해 기억 인출을 위해 이미지-텍스트를 제시할 경우 전전두엽의 기억인출 관련 부위와 시각 피질이 위치한 후두엽의 인터랙션이 높게 이루어지면서 암묵적인 시각적기억 표상의 인출이 발생하는 것을 알 수 있었다.
Kim, Young-Kwon;Lee, Jae-Pil;Lee, Mal-Rey;Kim, Kyung-Man;Kim, Ki-Tae
The Transactions of the Korea Information Processing Society
/
v.5
no.6
/
pp.1583-1592
/
1998
Recently, massive amount of infonnation is provided for the internet users. So users want to search information on Internet, but it is difficult to search information what you want. In this paper, we propose a personal Web-agent system using Case-based learning, Web-Guide. Web-Guide consists of two sub-system, interface-system and learning-system. Interface-system operates other web-browser nearly the same and connects user to system. And interface-system transfer datas of current page to learning-queue. Learning-system visit and evaluate the value of each page in learning-queue using evaluation-function that gave weight values occupied by analyzing tag used the character of HTML document. After all users who are known about artificial intelligence well and not made experiments by using Web-Guide, they reached their desired sites faster than before.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.