• Title/Summary/Keyword: 학습과 정보이용

Search Result 5,956, Processing Time 0.043 seconds

A Design of Automatically Change Teaching and Learning Model SSA for Smart Learning System (스마트 러닝 시스템을 위한 교수학습 모형 자동변화 SSA 설계)

  • Hong, Seong-Yong
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.1445-1446
    • /
    • 2011
  • 최근 스마트 컴퓨팅 시대를 맞아 스마트 러닝 시스템에 대한 관심도가 급증하고 있다. 스마트 러닝의 개념은 크게 2가지로 스마트 단말기를 이용한 학습 방법과 학습을 위한 스마트 학습 기법으로 나누어 볼 수 있다. 스마트 학습 기법은 학습자에게 좀 더 효율적이면서 학습의 효과를 증대시키기 위해 학습자의 성향과 학습자의 프로파일, 학습 상황 등을 인지하여 분석하고 적용할 수 있는 기법을 말한다. 본 논문에서는 학습자에게 스마트 러닝을 위한 스마트 학습 기법을 적용한 시스템 설계를 제안하고자 한다. 본 연구에서 제안하고 있는 스마트 러닝 시스템은 학습자에게 적합한 교수학습 모형을 자동으로 적용하여 학습의 효과를 극대화하고, 학습의 유형과 학습 패턴의 변화에 따라 시스템이 학습자에게 지능적으로 대처할 수 있도록 하는 것이다. 교수학습 모형이 학습자에게 자동변화 되기 위해서는 학습자의 성향분석 그리고 형성평가, 사후평가 등의 데이터 분석을 수집하고 자동으로 분석하여 적용 할 수 있는 스마트 학습 에이전트(SSA:Smart Study Agent)가 필요하다. 따라서 본 논문에서는 SSA 설계를 기반으로 스마트 러닝 시스템의 필요성과 향후 연구 발전에 따른 이러닝(e-learning) 교육 혁신에 기여하고자 한다.

Object Recognition in 360° Streaming Video (360° 스트리밍 영상에서의 객체 인식 연구)

  • Yun, Jeongrok;Chun, Sungkuk;Kim, Hoemin;Kim, Un Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.317-318
    • /
    • 2019
  • 가상/증강현실로 대표되는 공간정보 기반 실감형 콘텐츠에 대한 관심이 증대되면서 객체인식 등의 지능형 공간인지 기술에 대한 연구가 활발히 진행되고 있다. 특히 HMD등의 영상 시각화 장치의 발달 및 5G 통신기술의 출현으로 인해 실시간 대용량 영상정보의 송, 수신 및 가시화 처리 기술의 기반이 구축됨에 따라, $360^{\circ}$ 스트리밍 영상정보 처리와 같은 고자유도 콘텐츠를 위한 관련 연구의 필요성이 증대되고 있다. 하지만 지능형 영상정보 처리의 대표적 연구인 딥 러닝(Deep Learning) 기반 객체 인식 기술의 경우 대부분 일반적인 평면 영상(Planar Image)에 대한 처리를 다루고 있고, 파노라마 영상(Panorama Image) 특히, $360^{\circ}$ 스트리밍 영상 처리를 위한 연구는 미비한 상황이다. 본 논문에서는 딥 러닝을 이용하여 $360^{\circ}$ 스트리밍 영상에서의 객체인식 연구 방법에 대해 서술한다. 이를 위해 $360^{\circ}$ 카메라 영상에서 딥 러닝을 위한 학습 데이터를 획득하고, 실시간 객체 인식이 가능한 YOLO(You Only Look Once)기법을 이용하여 학습을 한다. 실험 결과에서는 학습 데이터를 이용하여 $360^{\circ}$영상에서 객체 인식 결과와, 학습 횟수에 따른 객체 인식에 대한 결과를 보여준다.

  • PDF

A Study on Teaching-Learning Support System Based on Learning Content Standard in Model Driven Architecture (Model Driven Architecture상의 학습컨텐츠 표준을 적용한 교수-학습지원 시스템에 관한 연구)

  • Song, Yu-Jin;Han, Eun-Ju;Kim, Myoung-Soo;Kim, Haeng-Kon
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.857-860
    • /
    • 2005
  • 웹 기술 기반의 컨텐츠 개발 및 운영으로 다른 환경에서의 컨텐츠 활용을 토대로 교육자원의 정보들을 통합 운영할 수 있는 관리 중심체인 e-learning 시스템의 중요성과 필요성이 대두되고 있으며, 교육용 어플리케이션은 현재 표준화되지 않은 개발 프로세스를 기반하여 개발하고 있는 실정이다. 따라서, 교육 컨텐츠의 재사용을 높이기 위해 국제적 학습 표준인 SCORM (Sharable Content Object Reference Model)을 기반으로 하나의 플랫폼에 있어서 시스템 개발 중 다른 플랫폼으로의 재사용이 가능한 핵심자산을 이용하여 조립, 생산할 수 있는 방안으로 체계적인 교육자원을 개발하고 지원하기 위한 교수-학습지원 시스템 개발에 초점을 둔 연구가 요구된다. 따라서, 본 논문에서의 교육적 도메인으로 접근하여 MDA(Model Driven Architecture)상의 교수-학습지원 시스템을 정의한다. 또한 학습컨텐츠 표준 메타데이터를 이용하여 컨텐츠저장소에 관한 분석 및 설계를 하고 MDA 자동화 툴을 이용한 핵심자산을 통해 실제 교수자가 필요로하는 컨텐츠를 제공할 수 있는 교수-학습지원 시스템을 개발하고자 한다.

  • PDF

Learning User Interest using Hierarchical Concept indexing based on Ontology (온톨로지 기반의 계층적 개념 인덱싱을 이용한 사용자 관심사 학습)

  • Park Ji-Hyun;Kim Heung-Nam;Jo Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.646-648
    • /
    • 2005
  • 인터넷의 급속한 성장과 더불어 사용자들은 인터넷을 통해 많은 정보를 얻을 수 있게 되었으며 최신 뉴스를 실시간으로 접근할 수 있게 되었다. 이에 따라 방대한 정보 속에 사용자 관심사에 맞는 정보를 효과적으로 검색하기 위한 여러 방법들이 연구되어 왔다. 하지만 기존의 많은 선행 연구들은 단어 빈도 기반의 키워드 벡터 모델을 이용하여 사용자의 관심사를 학습하고 있다. 이러한 키워드 벡터 모델은 사용자의 선호도를 명확하게 기술하지 못하고 키워드를 이용한 특징 벡터 (feature-vector)는 개념들 사이의 관계를 찾기 어려운 한계를 가지고 있다. 이를 개선하기 위해 본 논문에선 계층적 개념 인덱싱(Hierarchical Concept Indexing)을 이용한 온톨로지 형태의 개인화된 사용자 프로파일을 만드는 방법을 제안한다. 생성된 사용자 프로파일에 개념 간의 유사도와 개념에 대한 사용자의 관심도를 고려하여 보다 개인의 선호도에 맞는 기사를 제공한다. 실험에서는 제안된 방법의 성능 평가를 위해서 기존의 키워드 벡터 모델의 학습 방법인 WebMate 시스템과 비교 분석하였다. 그 결과 제안하는 방법이 키워드 벡터를 이용한 학습 방법보다 향상된 성능을 보였다.

  • PDF

Train Data Mining Algorithm for RBF-IDS (RBF신경망을 이용한 IDS에서의 학습데이터 결정 알고리즘)

  • 박일곤;문종섭
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2002.11a
    • /
    • pp.144-146
    • /
    • 2002
  • 현재 침입탐지 시스템은 인터넷의 확장과 더불어 네트워크 보안을 보장하기 위한 광범위한 수단으로 이용되고 있다. 이러한 탐지 시스템중 신경망의 적용은 분산된 네트워크와 다양한 공격환경하의 오용탐지와 비정상행위 탐지에 좋은 응용이 되고 있다. 본 연구에서는 RBF-신경망을 이용한 침입탐지 시스템이 가지고 있는 단점 중 하나인 학습데이터의 공격과 정상의 비율에 따라 탐지 율의 차이가 큰 것에 착안, 보다 자동화되고 안정된 학습을 위한 데이터 결정 알고리즘을 제안한다.

  • PDF

Learning Action Selection ,Network Using Learning Classifier System (Learning Classifier System을 이용한 행동 선택 네트워크의 학습)

  • 윤은경;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.404-406
    • /
    • 2003
  • 행동 기반 인공지능은 기본 행동들의 집합으로부터 적절한 행동을 선택함으로써 복잡한 행동을 하도록 하는 방식이다. 행동 기반 시스템은 1980년대에 시작되어 이제는 많은 에이전트 시스템에 사용되고 있다. 본 논문에서는 기존의 P. Maes가 제안한 행동 선택 네트워크에 Learning Classifier System을 이용한 학습 기능을 부가하여, 변하는 환경에 적절히 적응하여 행동의 시퀀스를 생성할 수 있는 방법을 제안하다. 행동 선택 네트워크는 주어진 문제에 따라 노드 간 연결을 설계자가 미리 설정하도록 하는데, 해결해야 할 문제가 변함에 따라 네트워크에서의 연결 형태가 변형될 필요가 있다. Khepera 로봇을 이용한 시뮬레이션 결과, 행동 선택 네트워크에서의 학습이 유용함을 확인할 수 있었다.

  • PDF

A Research of PCB Pattern Visual Inspection System using CAD Data (CAD 데이터를 이용한 PCB 패턴 시각검사 시스템에 관한 연구)

  • Park, Byung-Joon;Hahn, Kwang-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.446-449
    • /
    • 2007
  • 영상 학습은 컴퓨터를 이용한 자동 시각 검사에서 매우 중요하고 어려운 단계이다. 전자산업과 같이 신제품 개발 주기가 짧고 다양한 제품들을 검사하여야 하는 분야에서 어렵고 복잡한 학습 과정은 큰 문제가 되고 있다. 본 연구에서는 CAD 파일을 이용하여 PCB 자동 시각 시스템의 학습 과정을 손쉽게 할 수 있는 방안을 제시하였다.

  • PDF

이미지 기반 적대적 사례 생성 기술 연구 동향

  • O, Hui-Seok
    • Review of KIISC
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2020
  • 다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.

Properties of Human Cognitive Learning in a Movie Scene-Dialogue Memory Game Using EEG-Based Brain Function Analysis (EEG 기반 뇌기능 분석을 이용한 영화 장면-대사 기억 게임에서의 인지 학습 특성)

  • Lee, Chung-Yeon;Kim, Eun-Sol;Lee, Sang-Woo;Ko, Bong-Kyung;Kim, Joon-Shik;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.210-213
    • /
    • 2011
  • 기억 인출 단서는 학습을 통해 장기기억 공간에 저장된 정보를 인출하는 과정에서 중요하며, 서로 다른 종류의 기억 인출 단서에 따른 기억 인출 결과 및 이에 대한 인지 학습적 특성 규명은 교육, 범죄 수사, 그리고 인간의 뇌 기능을 모방한 기계학습 연구 등에서 중요하게 다루어져야 할 문제이다. 본 논문에서는 비디오 데이터를 이용하여 학습한 내용을 인출하는 과정에서 텍스트와 이미지가 각각 인출 단서로서 기억인출 결과에 미치는 영향을 분석하고, 기억 정보 및 시각 정보 처리와 관련된 뇌 영역에서의 뇌전도 분석을 이용하여 이를 해석하였다. 실험 결과를 통해 기억 인출을 위해 이미지-텍스트를 제시할 경우 전전두엽의 기억인출 관련 부위와 시각 피질이 위치한 후두엽의 인터랙션이 높게 이루어지면서 암묵적인 시각적기억 표상의 인출이 발생하는 것을 알 수 있었다.

A Personal Web-Agent System Using Case-Based Learning (사례기반 학습을 이용한 개인형 웹 에이젼트 시스템)

  • Kim, Young-Kwon;Lee, Jae-Pil;Lee, Mal-Rey;Kim, Kyung-Man;Kim, Ki-Tae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.6
    • /
    • pp.1583-1592
    • /
    • 1998
  • Recently, massive amount of infonnation is provided for the internet users. So users want to search information on Internet, but it is difficult to search information what you want. In this paper, we propose a personal Web-agent system using Case-based learning, Web-Guide. Web-Guide consists of two sub-system, interface-system and learning-system. Interface-system operates other web-browser nearly the same and connects user to system. And interface-system transfer datas of current page to learning-queue. Learning-system visit and evaluate the value of each page in learning-queue using evaluation-function that gave weight values occupied by analyzing tag used the character of HTML document. After all users who are known about artificial intelligence well and not made experiments by using Web-Guide, they reached their desired sites faster than before.

  • PDF