• Title/Summary/Keyword: 학교 과학 탐구

Search Result 634, Processing Time 0.028 seconds

Elementary Teachers' Perception of the Science Inquiry Activities and Essential Features of Science Inquiry (과학 탐구 활동의 유형과 과학 탐구의 특징에 대한 초등 교사의 인식)

  • Seong, Hyejin;Lim, Heejun
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.2
    • /
    • pp.163-172
    • /
    • 2019
  • This study explored elementary teachers' perceptions on the essential features of science inquiry, the appropriateness of inquiry activities to science inquiry, and the essential features of inquiry by inquiry activities. 85 elementary teachers' perceptions were investigated using Likert scale survey, and 7 teachers were interviewed. The results are as follows. First, the features that elementary teachers perceived the most essential were 'Engaging students in evaluating their explanations in light of alternative explanations' and 'Engaging students in communicating and justifying their explanations'. Second, The inquiry activities that teachers thought the most appropriate to science inquiry were 'experiment' and 'project'. On the other hand, the perceptions on 'discussion' and 'field trip' were relatively low. Third, the inquiry activity that showed the highest mean score of five essential features of inquiry was 'experiment' while the mean score of 'field trip' was the lowest. Educational implications about the science inquiry were discussed.

The Roles of Science Classroom Activities and Students' Learning Motivation in Achieving Scientific Competencies: A Test of Path Model (고등학생들의 과학적 역량에 있어서 과학수업 활동과 학습동기의 역할 -경로모형의 검증-)

  • Lim, Hyo Jin;Chang, Jina;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.3
    • /
    • pp.407-417
    • /
    • 2018
  • The purpose of this study is to analyze the roles of classroom activities in science lessons and student learning motivation in achieving students' scientific competencies, and to suggest implications for science lessons to develop scientific competencies. For this, based on the PISA 2015 data of Korean high school students, we analyzed how classroom activities in science influenced students' scientific competencies through learning motivation variables. As a result of the path analysis, the activities emphasizing interaction and a link to real life predicted intrinsic motivation, instrumental motivation, and science efficacy significantly. On the other hand, the activities that emphasize the student-led inquiry process did not show any effect on learning motivation. In addition, the higher the motivation to learn the science, the higher their scores in three scientific competencies: explaining phenomenon scientifically, evaluating and designing scientific inquiry, and interpreting data and evidence scientifically. The practices of school science lessons indirectly influenced the achievement of scientific competence through learning motivation. Specifically, the activities emphasizing interaction influenced achieving scientific competencies through intrinsic motivation, and the activities emphasizing linkage to real life influenced it through all learning motivation variables. Finally, we discussed some implications for the roles and practices of school science class for enhancing students' scientific competencies.

What Did Elementary School Pre-service Teachers Focus on and What Challenges Did They Face in Designing and Producing a Guided Science Inquiry Program Based on Augmented Reality? (증강현실 기반의 안내된 과학탐구 프로그램 개발에서 초등 예비교사들은 무엇에 중점을 두고, 어떤 어려움을 겪는가?)

  • Chang, Jina;Na, Jiyeon
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.725-739
    • /
    • 2022
  • This study aims to analyze what elementary school pre-service teachers focused on and what challenges they faced in designing and producing a guided science inquiry program based on augmented reality (AR) and to provide some implications for teachers' professionalism and teacher education. To this end, focusing on the cases of pre-service teachers who designed and created AR-based guided inquiry programs, the researchers extracted and categorized the pre-service teachers' focus and challenges from the program design and production stages. As a result, in the program design stage, the pre-service teachers tried to construct scenarios that could promote students' active inquiry process. At the same time, drawing on the unique affordances of AR, the pre-service teachers focused on creating vivid visual data in a 3D environment and making meaningful connections between virtual and real-world activities. The pre-service teachers faced challenges in making use of the advantages of AR technology and designing an inquiry program due to a lack of background knowledge about CoSpaces, a content creation program. In the program production stage, the pre-service teachers tried to make their program easy to handle to improve students' concentration on inquiry activities. In addition, challenges of programming using CoSpaces were reported. Based on these results, educational implications were discussed in terms of the pedagogical uses of AR and teachers' professionalism in adopting AR in science inquiry.

Analysis on Continuity between the 2015 Revised Elementary Intelligent Life Curric ulum and Sc ienc e Curric ulum for Grades 3-4 (2015 개정 초등학교 슬기로운 생활과 3~4학년 과학과 교육과정의 연계성 분석)

  • Park, Jisun;Chang, Jina;Jin, Ye Eun
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.267-282
    • /
    • 2022
  • This study aims to analyze the continuity and sequence between the intelligent life curriculum for grades 1-2 and the science curriculum for grades 3-4 with a focus on knowledge and inquiry process skills. The results demonstrate that contents related to science in the intelligent life curriculum consisted of only 10 out of 32 elements. Five elements were related to the science curriculum for grades 3-4 and limited to the 'life sciences' area. Particularly, the intelligent life curriculum did not address topics related to 'matter' and 'motion and energy'. Developmental connection was established in the 'life sciences' area and dramatic changes were noted for the topics related to 'earth and space' area. In terms of inquiry process skills, the levels of observation, measurement, inference, and communication naturally increased, whereas a developmental connection was noted between the intelligent life and science curricula. Classification can be viewed as a developmental link; however, viewing the classification as scientific from the epistemic perspectives was insufficient. In the case of expectation, a gap was observed in both curricula due to the absence of expectation activities in the intelligent life curricula. The study discussed the implications for securing the connection between the intelligent life and science curricula on the basis of these results.

초등수학에서의 수학적 패턴 지도

  • 김상미;신인선
    • Education of Primary School Mathematics
    • /
    • v.1 no.1
    • /
    • pp.3-22
    • /
    • 1997
  • 본 연구는 첫째로는 수학교육에서 패턴이 강조되는 이론적 근거를 찾고자 역사적 맥락에서 수학의 성격변화를 탐색하였다. 수학의 성격 변화를 통하여 수학은 수의 탐구, 기하의 탐구, 운동ㆍ변화ㆍ공간의 탐구, 수학 연구의 도구에 대한 탐구로 그 영역을 점차 확대하여 왔으며, '수학은 패턴의 과학이다'라는 정의는 수학이 폭넓어짐에 따라 수학이 무엇인가에 대한 수학의 본성에 접근하는 논의라고 할 수 있다. 이러한 수학에 대한 새로운 관점은 수학교육의 새로운 방향 모색에 시사하는 바를 살펴보고, 특히 수학교실의 변화에 따른 패턴의 강조를 살펴보았다. 둘째로는 수학적 패턴을 밝힘과 동시에 수학 교육에서 수학적 패턴 분석의 틀을 마련하고자 수학적 패턴의 유형화를 시도하였다. 패턴의 속성에 따른 유형화와 패턴의 생성 방식에 따른 유형화를 통하여 수학적 패턴의 유형을 마련하였다. 초등학교 수학에서 다루어지는 패턴은 어떠한 것인가를 현행 4학년 수학교과서 및 익힘책에 제한하여 유형화한 틀로서 조사 분석하였다. 셋째로는 수학적 패턴에 관한 지도 방안의 모색으로서, 지도의 기본 방향을 설정하고 수학적 패턴에 관한 교수 전략을 마련하였다. 교수전략은 크게 패턴에서의 규칙 찾기, 패턴을 변형ㆍ확장하기, 자신의 새로운 패턴 만들기, 패턴을 수학적으로 설명하기로 나누고, 각각에 3-4개의 세부 전략과 세부 전략에 따른 예를 제시하였다.

  • PDF

The Exploration of Open Scientific Inquiry Model Emphasizing Students' Argumentation (학생의 논변활동을 강조한 개방적 과학탐구활동 모형의 탐색)

  • Kim, Hee-Kyong;Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.6
    • /
    • pp.1216-1234
    • /
    • 2004
  • School science practical work is often criticized as lacking key elements of authentic science, such as peer argumentation or debate through which social consensus is obtained. The purpose of this paper is to review the recent studies about the argumentation and to explore the conditions and the model of argumentative scientific inquiry, which is specially designed open inquiry in order to facilitate students' peer argumentation. For this purpose, a theoretical discussion for the argumentative scientific inquiry as the way of authentic inquiry in schools was developed. The conditions for argumentative scientific inquiry were found to be the following: multiple arguments, students' own claims, opportunities for oral and written argumentation, equal status of debaters, and community of cooperative competition. For these conditions, the argumentative scientific inquiry was organized into experiment activities and argumentation activities. During argumentation activity, students should be guided to advance written argumentation through writing a group report for peer review and oral argumentation through a critical discussion. Through the argumentation between groups and in group, the students' arguments would be elaborated repeatedly. The feedback from argumentation links experiment activities to argumentation activities. Hence, the whole process of this inquiry model is circular.

The Development and Validation of Instructional Strategies Using the Advanced Laboratory Equipment(ALE) in Science High School Chemistry Classrooms: A Focus of UV-Visible and IR Spectrophotometer (과학고등학교 화학수업에서 첨단과학 실험기기 활용 수업 전략의 개발 및 타당화: 자외선-가시광선 및 적외선 분광기를 중심으로)

  • Jeon, Kyunghee;Park, Dahye;Jang, Nakhan;Park, Jongwook;Park, Jongseok
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.69-81
    • /
    • 2016
  • The purpose of this study was to find out the validation of instructional strategies using the Advanced Laboratory Equipment (ALE class) by investigating science high school students’ perception on ALE in chemistry classrooms and to consider the need for development of teaching materials on ALE class. 7 sessions of ALE including experiments with innovative equipment were developed and applied to 21 students in D Science High School. At the end of the sessions, questionnaire was given to the students. We also collected qualitative data by interviewing 9 students who participated in the questionnaire. We analyzed the data collected by In-depth interviews and students’ experimental reports. The result showed that ALE class was effective to enhance students’ understanding of learning concepts because the experimental time was shortened in real time data processing. Some students showed creative performance on solving scientific problems by using everyday materials in experimental process and developed perceptions of practical inquiry. Through this process, students’ positive attitudes and interests in science and heuristic inquiry skills were also enhanced. Developing ALE lesson materials will be helpful for students to understand science and technology and the domain of science in broader contexts.

Analysis on the Characteristics and Criteria Development in Performing Science Inquiry Tasks for Elementary School Students (초등학생 과학 탐구과제 수행 특성 분석 및 채점기준 개발)

  • Ham, Eun Hye;Lee, You-kyung;Park, So-Young;Park, Hyejin;Lee, Sunghye
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.2
    • /
    • pp.239-252
    • /
    • 2022
  • This study aims to develop performance criteria based on characteristics observed in science inquiry tasks for elementary school students. First, the performance characteristics by observing 70 fifth-grade elementary school students' science inquiry activity report are listed. Second, the checklist-type scoring criteria in connection with the theoretical framework of scientific inquiry process and relevant competencies are developed. Third, with the developed scoring criteria, 11 raters participate in scoring 350 students' reports. The main findings are as follow: first, the scoring data are well-fitted for the many-faceted Rasch model, and 22 scoring criteria are reasonably-well differentiated for various levels of proficiency. Second, at low performance level, observable characteristics are to answer questions explicitly required by the task or to observe objects or phenomena using pre-learned scientific concepts, while at high performance level, to explore additional data other than given data or to reflect on one's experimental process. Based on the results, the usefulness of analyzing students' performance characteristics for developing the scoring criteria, and further research directions are discussed.

Perception of Science Core Competencies of High School Students who Participated in the 'Skills' based Inquiry Class of the 2015 Revised Science Curriculum (2015 개정 과학과 교육과정의 '기능' 기반 탐구 수업에 참여한 고등학생의 과학과 핵심역량에 대한 인식)

  • Sangyou Park;Wonho Choi
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.2
    • /
    • pp.87-98
    • /
    • 2023
  • In this study, we investigated the change in science core competency perception of high school students and the reason for change when science inquiry classes were conducted using eight 'skills' of the 2015 revised science curriculum. Fifteen first-year high school students in Jeollanam-do participated in the science inquiry class of this study, and the class was conducted for 20 hours (5 hours a day for four days). The inquiry activities used in the class consisted of four activity stages (research problems, research methods, research results, and conclusions) and each stage was constructed to include at least one 'skill (Problem Recognition, Model Development and Use, Inquiry Design and Performance, Data Collection, Analysis and Interpretation, Mathematical Thinking and Computer Application, Conclusion and Evaluation, Evidence-based Discussion and Demonstration, and Communication)'. As a result of the study, students' perception of the five science core competencies increased statistically significantly at the significance level of 0.01 through inquiry classes and more than 93% of students recognized that their science core competencies improved through the classes. However, since the class of this study was conducted for a small number of students, it is difficult to generalize the effect of the class, and so it is necessary to conduct a quantitative study for many students.

Development of Assessment Tools for Scientifically Gifted and Talented with Lower Grades in Elementary School (초등학교 저학년 학생을 위한 종합적 과학재능 검사 도구의 개발 -수행형 검사 수행을 위한 시사점 도출-)

  • Seo, YoonKyung;Jhun, Youngseok
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.347-358
    • /
    • 2020
  • He purpose of this study is to design and apply a pilot assessment tools for scientifically gifted and talented elementary school students with lower grades. The assessment tool consists of three parts: homeroom teachers' recommendation, paper and pencil test and performance tests. The tools are verified whether they are suitable for unique characteristics of young children and enable to attract active participation. For suitability check, students' performance tests were inductively analyzed and 30 behavioral patterns were shown which were included and partially exceeded the level of lower elementary students' performance expectation in NGSS. As a result, we concluded that assessment tool developed in this study will be effective in discriminating young pupils' scientific talents. Then for participation check, we compared the number of coding references as an indicator of participation. Two cases were found that students with high interest participated passively in performance tests. We found these 'passive participants' had excessive scientific experiences and extremely narrow region of interest, during the process of complex interpretation between the results of this assessment tool and in-depth interviews with homeroom teachers. We found out in this study that newly developed tools can be used in school scene after modifying and elaboration through accumulation of more case studies.