• Title/Summary/Keyword: 하천 유속

Search Result 1,041, Processing Time 0.026 seconds

Seepage Behaviors on the Box Culvert Side of Enlarged Levee (하천 보축제체의 배수통문 구조물 측면부 침투 특성)

  • Yang, Hakyoung;Kim, Youngmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.4
    • /
    • pp.19-30
    • /
    • 2020
  • This numerical study is to investigate the seepage characteristics of the side of the structure in the event of leakage from the structural connection part of the drainage structure installed through the enlarged levee, and to analyze the effect of piping on the stabilization of the levee by the lateral penetration behavior. To take into account lateral seepage behavior, 2D and 3D numerical analyses were performed on the same model, and the effect of lateral seepage was analyzed to assess the validity of the numerical analysis. As a result, when leakage occurs and a lateral seepage is considered with the gate located on the riverside land, the maximum pore water pressure near the leakage point of the structure has been reduced by half compared to the normal seepage state where no leakage occurred. Excessive variation in the pore pressure was shown at the lower part of the structure, especially if lateral seepage is not considered. As a water level rises to the high water level, it shows the hydraulic gradient was larger than the critical hydraulic gradient, which will be vulnerable to long-term piping. If a gate is located in the inland and side seepage is not considered, the effect of the seepage water such as hydraulic gradient and seepage velocity is underestimated compared with the case of considering side seepage. The maximum hydraulic gradient is relatively small when lateral seepage is neglected if a gate is located in the riverside land and there was might be a risk of piping or loss of material. In addition, the period exceeding the critical hydraulic gradient was interpreted as a short time zone. As a result, it is considered that the possibility of piping can be underestimated if side seepage is ignored.

Characteristics of Sediment and Flow with Channel Patterns in Alluvial Rivers (충적하천(沖積河川)의 수로양상(水路樣相)에 따른 유사(流砂) 및 흐름특성(特性))

  • Lee, Jong Seok;Lee, Dae Cheol;Pai, Dong Man;Cha, Young Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1177-1189
    • /
    • 1994
  • This paper aims to develop the numerical model for prediction of the channel migration by analyzing of sediment and flow characteristics with patterns of channel in alluvial rivers. Flow in rivers constitutes to be the meandering or the braided form and rarely straight channel through morphologically stable patterns with mutual actions between the flowing water and bed materials. In order to develop the model for simulation of the channel migration, the channels are divided into two types with positive or negative sign by the direction of curvature radius of the centerline channel ($r_c$). That is, the single bend-channel consists of only one curvature of positive or negative sign and the multi-bend channel consists of two more curvatures of positive or negative sign, respectively. The model analyzes the sediment and flow characteristics under the influence of superelevation, spiral motion, irregularity in bed topography and depth-averaged velocity of channels. For reliability of this model, the single bend-channel and the multi bend channel are compared with experiment data in other models and the measured field data in the Keum-River, respectively. As a result, the both com parisians turn out to be excellent.

  • PDF

Correlation Analysis of Signal to Noise Ratio (SNR) and Suspended Sediment Concentration (SSC) in Laboratory Conditions (실험수로에서 신호대잡음비와 부유사농도의 상관관계 분석)

  • Seo, Kanghyeon;Kim, Dongsu;Son, Geunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.775-786
    • /
    • 2017
  • Monitoring sediment flux is crucial especially for maintaining river systems to understand morphological behaviors. Recently, hydroacoustic backscatter (or SNR) as a surrogate to empirically estimate suspended sediment concentration has been increasingly highlighted for more efficient acquisition of sediment dataset, which is difficult throughout direct sediment sampling. However, relevant contemporary researches have focused on wide range solution applicable for large natural rivers where H-ADCPs with relatively low acoustic frequency have been widely utilized to seamlessly measure streamflow discharge. In this regard, this study aimed at investigating hydroacoustical characteristics based on a very recently released H-ADCP (SonTek SL-3000) with high acoustic frequency of 3 MHz in order to capitalize its capacity to be applied for suspended sediment monitoring in laboratory conditions. SL-3000 was tested in a laboratory flume to collect SNR in conjunction with LISST-100X for actual sediment concentration and particle distribution in both sand and silt sediment injection in various amount. Conventional algorithms to correct signal attenuations for water and sediment were carefully tested to validate whether they can be applied for SL-3000. As result of analyzing the SNR-SSC correlation trand, through further study in the future, it is confirmed that SSC can be observed indirectly by using the SNR.

A Study on the Distribution Patterns of Salicaceae species at the An-sung Stream - Refered to Woldongcheon, Yokjungcheon, Joyoungcheon and Gisolcheon - (안성천 수계의 버드나무과 식물의 분포특성에 관한 연구 - 월동천, 옥정천, 조령천, 기솔천을 중심으로 -)

  • 안영희;양영철;전승훈
    • Korean Journal of Environment and Ecology
    • /
    • v.15 no.3
    • /
    • pp.213-223
    • /
    • 2001
  • This study was carried out to clarify the distribution pattern of Salicaceae species which are considered as obligatory riparian vegetation, and also the correspondence between their distribution and the environment factors. Eighty-three study sites by stratified sampling were selected from the upstream to the downstream of An-sung stream. Vegetation factors such as coverage by species, disturbance, etc., and environmental factors including microtopography, soil properties, etc., measured and analyzed. Salicaceae species were identified as total 2 genera, 11 species through all study area, and the average occurring species were 2.8 species.5. koreensis among other species showed highest occurring frequency at An-sung streams, and also it was distributed widely through study area. S. gracizistyla was mainly fecund at upstream sites, where sandy soil texture and high longitudinal slope were developed. S. purpurea vats. japonica was mostly observed in the sandy soil, the same as S. gracilistytu and however, was not dominant but rather mixed with S. gracitistyta and S. koreensis. On the other hand, distribution of S. glandulosa were closely related with littoral zone of the lake and the lower sea level with sandy loam and loamy sand Boils of high organic matter content. Under CCA, canonical correspondence analysis, distribution of Saticaceae species was positively correlated with environmental gradients such as soil properties along to topography.

  • PDF

The Riparian Vegetation Disturbed by Two Invasive Alien Plants, Sicyos angulatus and Paspalum distichum var. indutum in South Korea (침입외래식물인 가시박과 털물참새피에 의하여 교란된 하안식생)

  • Lee, Chang Woo;Kim, Deokki;Cho, Hyunsuk;Lee, Hyohyemi
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.255-263
    • /
    • 2015
  • Biological invasion of alien plants is considered to be one of the most serious threats to biodiversity in riparian zones. The effects of two invasive alien plants, Sicyos angulatus and Paspalum distichum var. indutum, on the flora and community structure of the riparian vegetation were investigated at 22 sites at streams in Korea. Sicyos angulatus has invaded the central Korean Peninsula. This alien plant has caused problems to stream managers because of its aggressive vining growth. It had suppressed native vegetation such as trees, shrubs and tall grasses on bank slope and higher floodplains. Paspalum distichum var. indutum has become more widespread in the southern part of Korea. This invasive plant has shallow rhizomes and creeping, extensively branched stolons. It forms a dense mat over lotic or slowly-flowing water and threatens submerged and short emergent hydrophytes. In order to control the introduction and expansion of alien plants, limitation of artificial disturbances and appropriate alien plant management are needed in riparian areas.

Ecosystem Diagnosis and Evaluations Using Various Stream Ecosystem Models (다양한 하천생태모델을 이용한 생태계 진단 및 평가)

  • Kim, Ja-Hyun;Lee, Eui-Haeng;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.370-378
    • /
    • 2007
  • The objective of this research was to diagnose integrative ecological health in Bansuk Stream, one of the tributaries of Gap Stream, using the fish assemblage during July 2006${\sim}$April 2006. For this research, we selected six sampling sites and applied some approaches such as the Index of Biological Integrity (IBI), Qualitative Habitat Evaluation Index (QHEI), and necropsy-based Health Assessment Index (HAI). The stream health condition, based on the IBI values, averaged 24 (n= 18, range: $10{\sim}46$), indicating "poor${\sim}$fair" condition according to the criteria of US EPA (1993). Physical habitat condition, based on the QHEI, averaged 116 (n=6, range: $77{\sim}139$), indicating "fair${\sim}$good" condition. Values of IBI were more correlated with 3 metrics of instream cover ($M_1$, r=0.553, p=0.017, n=18), flow/velocity ($M_3$, r=0.627, p=0.005, n=18), and riffes/bends ($M_7$, r=0.631, p=0.005, n=18) than other metrics. Value of HAI in the control was zero (i.e., excellent condition), while the values in the T1 and T2 treatments were 5 (range: 0${\sim}$30) and 50 (range: 40${\sim}$80), respectively. The maximum values of IBI (46) were coincided with zero of HAI. Thus, these approaches seem to be a good tool for a diagnosis and evaluations of stream ecosystem health.

Limnological Study on Spring-Bloom of a Green Algae, Eudorina elegans and Weirwater PulsedFlows in the Midstream (Seungchon Weir Pool) of the Yeongsan River, Korea (영산강 중류 (승촌보)의 봄철 녹조류 Eudorina elegans 대발생과 봇물 펄스방류에 대한 육수학적 고찰)

  • Shin, Jae-Ki;Kang, Bok-Gyoo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.320-333
    • /
    • 2016
  • This study was carried out to elucidate the development of unprecedented water-bloom caused by a single species of colonial green algae Eudorina elegans in the upstream area of the Seungchon weir located in the Yeongsan River from late April to May 2013. The Yeongsan River is typically regulated system and the waterbody is seriously enriched by both external and internal sources of nutrients. Seasonal algal outbreaks were highly probable due to various potential factors, such as the excessive nutrients contained in treated wastewater, slow current, high irradiation and temperature, in diatom (winter), green algae (spring) and bluegreen algae (summer). Spring green-tide was attributed to E. elegans with level up to $1,000mg\;m^{-3}$(>$50{\times}10^4cells\;mL^{-1}$). The bloom was exploded in the initial period of the algal development and after then gradually diminished with transporting to the downstream by the intermittent rainfall, resulting in rapid expansion of the distribution range. Although the pulsed-flows by the weir manipulation was applied to control algal bloom, they were not the countermeasures to solve the underlying problem, but rather there still was a remaining problem related to the impact of pulsed-flows on the downstream. The green-tide of E. elegans in this particular region of the Yeongsan River revealed the blooming characteristics of a colonial motile microalga, and fate of vanishing away by the succeeding episodic events of mesoscale rainfall. We believe that the results of the present study contribute to limno-ecological understanding of the green-tide caused by blue-green algae in the four major rivers, Korea.

Characterizing three-dimensional mixing process in river confluence using acoustical backscatter as surrogate of suspended sediment (부유사 지표로 초음파산란도를 활용한 합류부 3차원 수체혼합 특성 도출)

  • Son, Geunsoo;Kim, Dongsu;Kwak, Sunghyun;Kim, Young Do;Lyu, Siwan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.167-179
    • /
    • 2021
  • In order to characterize the mixing process of confluence for understanding the impacts of a river on the other river, it has been crucial to analyze the spatial mixing patterns for main streams depending on various inflow conditions of tributaries. However, most conventional studies have mostly relied upon hydraulic or water quality numerical models for understanding mixing pattern analysis of confluences, due to the difficulties to acquire a wide spatial range of in-situ data for characterizing mixing process. In this study, backscatters (or SNR) measured from ADCPs were particularly used to track sediment mixing assuming that it could be a surrogate to estimate the suspended sediment concentration. Raw backscatter data were corrected by considering the beam spreading and absorption by water. Also, an optical Laser diffraction instrument (LISST) was used to verify the method of acoustic backscatter and to collect the particle size distribution of main stream and tributary. In addition, image-based spatial distributions of sediment mixture in the confluence were monitored in various flow conditions by using an unmanned aerial vehicle (UAV), which were compared with the spatial distribution of acoustic backscatter. As results, we found that when acoustic backscatter by ADCPs were well processed, they could be proper indicators to identify the spatial patterns of the three-dimensional mixing process between two rivers. For this study, flow and sediment mixing characteristics were investigated in the confluence between Nakdong and Nam river.

Clustering of sediment characteristics in South Korean rivers and its expanded application strategy to H-ADCP based suspended sediment concentration monitoring technique (한국 하천의 지역별 유사특성의 군집화와 H-ADCP 기반 부유사 농도 관측 기법에의 활용 방안)

  • Noh, Hyoseob;Son, GeunSoo;Kim, Dongsu;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.43-57
    • /
    • 2022
  • Advances in measurement techniques have reduced measurement costs and enhanced safety resulting in less uncertainty. For example, an acoustic doppler current profiler (ADCP) based suspended sediment concentration (SSC) measurement technique is being accepted as an alternative to the conventional data collection method. In Korean rivers, horizontal ADCPs (H-ADCPs) are mounted on the automatic discharge monitoring stations, where SSC can be measured using the backscatter of ADCPs. However, automatic discharge monitoring stations and sediment monitoring stations do not always coincide which hinders the application of the new techniques that are not feasible to some stations. This work presents and analyzes H-ADCP-SSC models for 9 discharge monitoring stations in Korean rivers. In application of the Gaussian mixture model (GMM) to sediment-related variables (catchment area, particle size distributions of suspended sediment and bed material, water discharge-sediment discharge curves) from 44 sediment monitoring stations, it is revealed that those characteristics can distinguish sediment monitoring stations regionally. Linking the two results, we propose a protocol determining the H-ADCP-SSC model where no H-ADCP-SSC model is available.

A SVR Based-Pseudo Modified Einstein Procedure Incorporating H-ADCP Model for Real-Time Total Sediment Discharge Monitoring (실시간 총유사량 모니터링을 위한 H-ADCP 연계 수정 아인슈타인 방법의 의사 SVR 모형)

  • Noh, Hyoseob;Son, Geunsoo;Kim, Dongsu;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.321-335
    • /
    • 2023
  • Monitoring sediment loads in natural rivers is the key process in river engineering, but it is costly and dangerous. In practice, suspended loads are directly measured, and total loads, which is a summation of suspended loads and bed loads, are estimated. This study proposes a real-time sediment discharge monitoring system using the horizontal acoustic Doppler current profiler (H-ADCP) and support vector regression (SVR). The proposed system is comprised of the SVR model for suspended sediment concentration (SVR-SSC) and for total loads (SVR-QTL), respectively. SVR-SSC estimates SSC and SVR-QTL mimics the modified Einstein procedure. The grid search with K-fold cross validation (Grid-CV) and the recursive feature elimination (RFE) were employed to determine SVR's hyperparameters and input variables. The two SVR models showed reasonable cross-validation scores (R2) with 0.885 (SVR-SSC) and 0.860 (SVR-QTL). During the time-series sediment load monitoring period, we successfully detected various sediment transport phenomena in natural streams, such as hysteresis loops and sensitive sediment fluctuations. The newly proposed sediment monitoring system depends only on the gauged features by H-ADCP without additional assumptions in hydraulic variables (e.g., friction slope and suspended sediment size distribution). This method can be applied to any ADCP-installed discharge monitoring station economically and is expected to enhance temporal resolution in sediment monitoring.