• Title/Summary/Keyword: 하천합류부

Search Result 188, Processing Time 0.027 seconds

Effects of Macrophytes on Budget of Matters in Lake Paldang (대형수생식물이 팔당호의 물질 수지에 미치는 영향)

  • Park, Hae-Kyung;Jung, Dong-Il;Byeon, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.85-92
    • /
    • 2006
  • To evaluate the primary production and nutrient uptake of macrophytes in Lake Paldang, this study investigate the vegetation areas of six dominant aquatic plants including Typha angustifolia, Zizania latifolia, Phragmites australis, Trapa japonica, Nelumbo nucifera and Savinia natans, and contents of carbon, nitrogen and phosphorus of each macrophyte. Total vegetation area of six dominant aquatic plants was 1.37 $km^2$. Among them, Typha angustifolia was the most wide-distributed species which occupied the 46.7% of total vegetation area. Littoral zone of South Han river had the largest vegetation area with 0.458 $km^2$, and North Han river, Kyungan river and confluence area in the order named. The results of the contents of carbon, nitrogen and phosphorus of macrophytes showed that the carbon contents of emergent macrophytes was higher than that of other life-forms. The nitrogen content of Salvinia natans, free-floating macrophyte was highest and that of Typha angustifolia, emergent macrophyte was lowest. The phosphorus content of Trapa japonica showed the highest content of phosphorus among six macrophytes and emergent macrophytes such as Zizania latifolia and Phragmites australis showed lower contents of phosphorus than other life-forms. The annual net primary production of macrophytes in Lake Paldang, 2004, was calculated as 758.4 ton C $yr^{-1}$ and the annual net nitrogen and phosphorus uptake of macrophyte was 16,921 kg $yr^{-1}$ and 1,841.0 kg P $yr^{-1}$ respectively. Comparing the total budget of organic carbon, nitrogen and phosphorus in Lake Paldang, the amount of primary production and nutrient uptake by macrophytes take a small portion in total budget implying macrophytes do not play an important role in budget of matters in river-type lake, Lake Paldang.

Optimal Water Allocation considering Reservoir Operation Rules (저수지 운영률을 고려한 최적용수배분)

  • Kang Jaewon;Rieu Seung-yup;Cha Donghoon;Ko Ick Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1430-1434
    • /
    • 2005
  • 금강 유역과 같이 복잡한 하천유역 시스템의 관리를 위해서는 시스템 요소들을 통합적으로 분석할 수 있는 효과적인 의사결정지원 도구가 필요하다. K-MODSIM 모형은 단기 물관리, 장기 운영계획, 가뭄 대비계획 및 물관련 분쟁 해결을 위해 보다 개선된 유역관리 전략을 수립하기 위한 컴퓨터 기반 도구로 개발되었으며, 본 연구에서는 K-MODSIM 모형에 저수지 운영률을 반영하여 유역의 용수배분을 평가하였다. 유역 저수지군 운영 환경 및 제약조건을 반영한 네트워크를 구성한 후, 두 단계의 모형 검정을 수행하였다. 먼저 물리적 검정을 통해서 전체 대상 수계의 상하류 물수지를 검토하고, 다음 단계인 운영 측면의 검정에서 물리적으로 나타나는 상황이 댐 운영이나 제약 조건 등에 부합하는지의 여부를 검토하였다. 대청댐과 용담댐의 통합 운영을 위한 최적 운영률의 개발은 동적계획법 소프트웨어인 CSUDP를 이용하여 수행하였으며, 여기서 사유한 접근법은 음해 추계학적 동적계획법이다. 이 접근방법은 유입량 시계열을 추계학적으로 모의발생시키고, CSUDP 모형은 모의발생시킨 유입량 시계열에 대한 최적운영률을 찾기 위해 사용하며, CSUDP의 최적화 결과에 대한 통계적인 분석을 통해 월단위 운영률을 도출하였다. K-MODSIM 모형에 저수지 운영률을 반영하여 유역의 용수배분을 평가하였다. 유역 저수지군 운영 환경 및 제약조건을 반영한 네트워크를 구성하고, 대청댐과 용담댐의 통합 운영을 위한 최적연계 운영를을 개발하여 다음과 같은 운영 시나리오들을 개발하고 평가하였다. $\cdot$ 금강수계에 대한 용당댐의 영향 평가 $\cdot$ 댐 연계운영시 수요량 변화에 따른 영향 평가 $\cdot$ 하도추적을 고려한 일별모형의 검증 개발된 운영률과 하도추적방법을 K-MODSIM 모형에서 검증하기 위해서 vb.net 스크립트 파일을 개발하여 적용하였다.L이하로 이를 유등천 상류부에 공급할 경우 유등천의 수질은 BOD 6.7mg/L, TN 9.80mg/L, TP 0.90mg/L를 나타낼 것으로 예측된다. 고도처리시설의 도입 후 금강 합류점에서 갑천의 예측 BOD는 7.4mg/L로 현재 9.0mg/L에 비하여 개선되지만 이는 금강수계 오염총량 관리계획의 시$\cdot$도 경계지점 목표수질인 5.9mg/L를 만족시키지 못하므로, 이를 만족시키기 위해서는 방류수 BOD 7.2mg/L이하로 처리해야 할 것으로 판단된다.which support only concepts or image features.방하는 것이 선계기준에 적합한 것으로 나타났다. 밸브 개폐에 따른 수압 변화를 모의한 결과 밸브 개폐도를 적절히 유지하여 필요수량의 확보 및 누수방지대책에 활용할 수 있을 것으로 판단된다.8R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$로 나타났다.천성 승모판 폐쇄 부전등을 초래하는 심각한 선천성 심질환이다. 그러나 진단 즉시 직접 좌관상동맥-대동맥 이식술로 수술적 교정을 해줌으로써 좋은 성적을 기대할 수 있음을 보여주었다.특히 교사들이 중요하게 인식하는 해방적 행동에 대한 목표를 강조하여 적용할 필요가 있음을 시사하고 있다.교하여 유의한 차이가 관찰되지 않았다. 또한 HSP 환자군에서도 $IL1RN^{*}2$ allele 빈도와

  • PDF

Water Quality Assessment by Algal Growth Potential (AGP) from Midstream to Downstream of the Kum River (금강 중 ${\cdot}$ 하류에서 AGP에 의한 수질평가)

  • Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.244-250
    • /
    • 2000
  • Algal growth potential (AGP) bioassay were conducted to assess the water quality and fertility in the Kum River from March 1998 to June 1999. AGP values were always the highest at the conjuction site of the Kapchon, which is a tributary of the Kum River. Average value of AGP by Microcystis aeruginosa in the main river and tributary was 17.0 mg dw/l, 48.3 mg dw/l, respectively. AGP values decreased towards the lower part of the river and consisted in the water quality or nutrient analysisresults. Among the tributaries, AGP of the Kapchon, Mihochon and Soksongchon were relatively high, and the average value was 161.2, 50.3 and 125.6 mg dw/l, respectively. AGP value in the Yukuchon was lowest among the study stations with <2.7 mg dw/l. Water quality in the lower part of the Kum River deteriorated in drought season, and the AGP values of this season were higher than those in other seasons. Based on correlation analysis between AGP results and nutrients, limiting nutrient appeared to be P because SRP (r = 0.99) was higher than other nutrients, and N uptake in algal growth was preferred by $NH_4$ rather than $NO_3$. The variation of AGP was different according to localities and seasons, and it was related to nutrient fluctuation in the inlet tributary. Water quality status according to AGP was assessed to be eutrophic.

  • PDF

Experimental Study on Mechanism Analysis of Headcut Erosion in the Noncohesive Sediment Bed (비점착성 하상에서의 두부침식 메커니즘 분석에 관한 실험 연구)

  • Ji, Un;Jang, Eun-Kyung;Kang, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1500-1506
    • /
    • 2015
  • The headcut erosion at the confluence section of a mainstream and tributary can migrate up the tributary streams, and rapid degradation can threaten the stability of hydraulic structures installed in the channel. Therefore, quantitative analysis for the development and mechanism of headcut erosion is needed to prevent damage due to the headcut. In this study, hydraulic experiments for headcut erosion in the channel with noncohesive materials were performed and the knickpoint movement and final bed slope change were analyzed based on the different hydraulic conditions. As a result, the knickpoint movement was 1.5 times faster when the difference in velocity between the upstream and downstream sections was 2.5 times greater and the central part of the cross-section was eroded and collapsed earlier than the left and right sides. The movement length of headcut erosion was longer and the final bed slope was milder as the velocity difference between the upstream and downstream sections was increased. This study showed that a correlation between the knickpoint movement and bed slope change by headcut erosion and the water level difference of upstream and downstream sections was not constant compared to the velocity difference.

Determining the Locations of Washland Candidates in the Four Major River Basins Using Spatial Analysis and Site Evaluation (공간분석 및 현장조사 평가 기법을 활용한 4대강 강변저류지 조성 후보지 선정)

  • Jeong, Kwang-Seuk;Shin, Hae-Su;Jung, Ju-Chul;Kim, Ik-Jae;Choi, Jong-Yun;Jung, In-Chul;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.44-54
    • /
    • 2010
  • In this study, a comprehensive exploration and evaluation of washland candidate locations by means of field monitoring as well as spatial analysis in six major river system (Han, Nakdong, Nam, Geum, Youngsan, and Seomjin Rivers). Washland(in other words, river detention basin) is an artificial wetland system which is connected to streams or rivers likely to riverine wetlands. Major purpose of washland creation is to control floodings, water supply and purification, providence of eco-cultural space to human and natural populations. Characteristics and functions of riverine wetlands can be expected as well, thus it is believed to be an efficient multi-purpose water body that is artificially created, in terms of hydrology and ecology. Geographical information and field monitoring results for the washland candidate locations were evaluated in 2009, with respect to optimal location exploration, ecosystem connectivity and educational-cultural circumstances. A total of $269\;km^2$ washland candidate locations were found from spatial analysis (main channel of Rivers South Han, 71.5; Nakdong 54.1; Nam, 2.3; Geum, 79.0; Youngsan 46.4; Seomjin 15.7), and they tended to be distributed in mid- to lower part of the rivers to which tributaries are confluent. Field monitoring at 106 sites revealed that some sites located in the Rivers Nam and Geum is appropriate for restoration or artificial creation as riverine wetlands. Several sites in the Nakdong and Seomjin Rivers were close to riverine wetlands (e.g., Upo), habitats of endangered species (e.g., otters), or adjacent to educational facility (e.g., museums) or cultural heritages (e.g., temples). Those sites can be utilized in hydrological, ecological, educational, and cultural ways when evidence of detailed hydrological evaluation is provided. In conclusion, determination of washland locations in the major river basins has to consider habitat expansion as well as hydrological function (i.e. flood control) basically, and further utility (e.g. educational function) will increase the values of washland establishment.

Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea (남·북한강과 경안천 합류 수역 팔당호의 수질 변동성에 대한 기상·수문학적 영향)

  • Hwang, Soon-Jin;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Choi, Bong-Geun;Eum, Hyun Soo;Park, Myung-Hwan;Noh, Hye Ran;Sim, Yeon Bo;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.354-374
    • /
    • 2016
  • This study explored spatiotemporal variability of water quality in correspondence with hydrometeorological factors in the five stations of Paldang Reservoir located in the Han River during 4 years from May 2012 to December 2015. Variability of basic water quality factors were largely related with seasonal fluctuations of hydrology. Temperature stratification occurred in the deep dam station, and prolonged hypoxia was observed during the draught year. Nitrogen nutrients were increased with decreasing inflow in which changing pattern of $NH_4$ reversed to $NO_3$ by the effect of treated wastewater effluent. Phosphorus increase was manifest during the period of high inflow or severe drought. Chl-a variation was reversely related with both flow change and AGP(algal growth potential) variations. Our study demonstrated that water quality variability in Paldang Reservoir was largely attributed to both natural and operational changes of inflow and outflow (including water intake) based on major pollution source of the treated wastewater (total amount of $472{\times}10^3m^3d^{-1}$) entering to the water system from watershed. In the process of water quality variability, meteorological (e.g., flood, typhoon, abnormal rainfall, scorching heat of summer) and hydrological factors (inflow and discharge) were likely to work dynamically with nutrients pulse, dilution, absorption, concentration and sedimentation. We underline comprehensive limnological study related to hydro-meteorolology to understand short- and long-term water quality variability in river-type large reservoir and suggest the necessity of P-free wastewater treatment for the effective measure of reducing pollution level of Paldang drinking water resource.

Carbon Dynamics of Plankton Communities in Paldang Reservoir (팔당호 플랑크톤 군집의 탄소생물량 동태)

  • Noh, Seong-You;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.174-187
    • /
    • 2008
  • In an effort to identify structure and function of microbial loop in Paldang reservoir, we monitored environmental and biological factors at Kyungan stream (station K), Paldang dam (station P) and the confluence of North and South Han River (station M) from March to December, 2005. DOC concentration was higher in March to May and November than the others. Nutrient concentration in station K detected relatively higher than that of two stations. Both of phosphate and silicate gradually increased at all stations until September, after then decreased. The highest Chl-$\alpha$ concentration was observed at all stations in April, and November. The carbon biomass of bacteria and HNF were relatively higher in March, May and August than the others, whereas that of the ciliate showed no significant difference in monthly fluctuation. Nevertheless, the significant relationships revealed between ciliate (P<0.001) and HNF (P<0.05) and bacterial density. Tintinnopsis cratera, Didinium sp., Vorticella sp., Paramecium sp. and Strombidium sp. were dominant species in ciliate community. The dominant species of phytoplankton were Stephanodiscus hantzschii and Cyclotella meneghiniana at almost stations in Spring, Summer and Autumn. However, Aulacoseira granulata accounted for >95% of phytoplankton biomass at station P and M in Autumn. The carbon biomass of zooplankton was highest at station P and M in June, and relatively higher biomass observed at all stations in August, October and November. Diaphanosoma brachyurum and Bosmina longirostris were dominant in stations P and M of June and in all stations of October and November, respectively. The maximum growth (A. granulata: $0.17\;d^{-1}$, S. hantzschii: $0.14\;d^{-1}$) and grazing rate (A. granulata: 1.93 preys $d^{-1}$, S. hantzschii: 1.63 preys $d^{-1}$) of Bosmina longirostris revealed in algal preys as Aulacoseira granulata and Stephanodiscus hantzschii. In conclusion, these results suggest that bacteria and phytoplankton can play the most crucial source as prey within microbial food chain in Spring and Summer and grazing food chain in Autumn, respectively.

Analysis of inundation and rainfall-runoff in mountainous small catchment using the MIKE model - Focusing on the Var river in France - (MIKE 모델을 이용한 산지소유역 강우유출 및 침수 분석 - 프랑스 Var river 유역을 중심으로 -)

  • Lee, Suwon;Jang, Dongwoo;Jung, Seungkwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Recently, due to the influence of climate change, the occurrence of damage to heavy rain is increasing around the world, and the frequency of heavy rain with a large amount of rain in a short period of time is also increasing. Heavy rains generate a large amount of outflow in a short time, causing flooding in the downstream part of the mountainous area before joining the small and medium-sized rivers. In order to reduce damage to downstream areas caused by flooding, it is very important to calculate the outflow of mountainous areas due to torrential rains. However, the sewage network flooding analysis, which is currently conducting the most analysis in Korea, uses the time and area method using the existing data rather than calculating the rainfall outflow in the mountainous area, which is difficult to determine that the soil characteristics of the region are accurately applied. Therefore, if the rainfall is analyzed for mountainous areas that can cause flooding in the downstream area in a short period of time due to large outflows, the accuracy of the analysis of flooding characteristics that can occur in the downstream area can be improved and used as data for evacuating residents and calculating the extent of damage. In order to calculate the rainfall outflow in the mountainous area, the rainfall outflow in the mountainous area was calculated using MIKE SHE among the MIKE series, and the flooding analysis in the downstream area was conducted through MIKE 21 FM (Flood model). Through this study, it was possible to confirm the amount of outflow and the time to reach downstream in the event of rainfall in the mountainous area, and the results of this analysis can be used to protect human and material resources through pre-evacuation in the downstream area in the future.