• Title/Summary/Keyword: 하중 불확실성

Search Result 184, Processing Time 0.025 seconds

FEM-based Seismic Reliability Analysis of Real Structural Systems (실제 구조계의 유한요소법에 기초한 지진 신뢰성해석)

  • Huh Jung-Won;Haldar Achintya
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.171-185
    • /
    • 2006
  • A sophisticated reliability analysis method is proposed to evaluate the reliability of real nonlinear complicated dynamic structural systems excited by short duration dynamic loadings like earthquake motions by intelligently integrating the response surface method, the finite element method, the first-order reliability method, and the iterative linear interpolation scheme. The method explicitly considers all major sources of nonlinearity and uncertainty in the load and resistance-related random variables. The unique feature of the technique is that the seismic loading is applied in the time domain, providing an alternative to the classical random vibration approach. The four-parameter Richard model is used to represent the flexibility of connections of real steel frames. Uncertainties in the Richard parameters are also incorporated in the algorithm. The laterally flexible steel frame is then reinforced with reinforced concrete shear walls. The stiffness degradation of shear walls after cracking is also considered. The applicability of the method to estimate the reliability of real structures is demonstrated by considering three examples; a laterally flexible steel frame with fully restrained connections, the same steel frame with partially restrained connections with different rigidities, and a steel frame reinforced with concrete shear walls.

The Study of Reliability Based Optimization Design for Connection (불확실성을 고려한 접합부의 최적설계에 관한 연구)

  • Shin, Soo-Mi;Yun, Hyug-Gee;Kim, Hye-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.26-32
    • /
    • 2016
  • Usually, there are many uncertainties regarding the error of an assumed load, material properties, member size, and structure analysis in a structure, and it may have a direct influence on the qualities of optimal design of structures. Probabilistic analysis has developed rapidly into a desirable process and structural reliability analysis is an increasingly important tool that assists engineers to consider uncertainties during the design, construction and life of a structure to calculate its probability of failure. This study deals with the applications of two optimization techniques to solve the reliability-based optimization problem of structures. The reliability-based optimization problem was formulated as a minimization of the structural volume subject to the constraints on the values of componential reliability index determined by the AFOSM approach. This presented method may be a useful tool for the reliability-based design optimization of structures.

Assessment of Partial Safety Factors for Limit States Design of Foundations (한계상태설계법의 기초설계 적용을 위한 부분안전계수의 평가)

  • Kim Bum-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.77-89
    • /
    • 2004
  • While limit states design (LSD) is currently the standard structural design practice, it is relatively new in the geotechnical design. Adoption of LSD far geotechnical design is an international trend. In the present study, various LSD codes from the United States, Canada, and Europe were reviewed. A simple first-order-second-moment (FOSM) reliability analysis was performed to determine theoretically the ranges of load and resistance factor values for representative loads and foundation bearing capacity, respectively. In order for foundation design to be consistent with current structural design practice, it would be desirable to use the same loads, load factors and load combinations. The values of load factor, obtained from the FOSM analysis, were found to be generally consistent with those given in the codes, whereas the values of resistance factor indicated overall lower ranges due to high values of coefficient of variation used in the analysis. Since the degree of uncertainties included in bearing capacity of foundations varies with the methods used to estimate the bearing capacity, different values of resistance factor should be used fur different methods. For the purpose, continuous efforts are needed to be made first to accurately identify and quantify the uncertainties in the methods.

Reliability analysis of LNG unloading arm considering variability of wind load (풍하중의 변동성을 고려한 LNG 하역구조물의 신뢰성해석)

  • Kim, Dong Hyawn;Lim, Jong Kwon;Koh, Jae Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.223-231
    • /
    • 2007
  • Considering wind speed uncertainty, reliability analysis of the LNG unloading arm at Tongyoung Production Site was performed. Extreme distribution of wind speed was estimated from the data collected at the weather center and wind load was calculated using wind velocities and coefficients of wind pressure. The unloading arm was modeled with plate and solid elements. Contact elements were used to describe the interface between base of structure andground. Response surface for maximum effective stress was found for reliability analysis and then reliability functions was defined and used to determine exceeding probability of allowable and yield stresses. In addition, sensitivity analysis was also performed to estimate the effect of possible material deterioration in the future.

Critical Strengthening Ratio of CFRP Plate Using Probability and Reliability Analysis for Concrete Railroad Bridge Strengthened by NSM (확률.신뢰도 기법을 적용한 CFRP 플레이트 표면매립보강 콘크리트 철도교의 임계보강비 산정)

  • Oh, Hong-Seob;Sun, Jong-Wan;Oh, Kwang-Chin;Sim, Jong-Sung;Ju, Min-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.681-688
    • /
    • 2009
  • The railroad bridges have been usually experienced by vibration and impact in service state. With this reason, it is important that the effective strengthening capacity should be considered to resist the kind of service loading. In this study, NSM strengthening technique is recommended for the concrete railroad bridge because of its better effective resistance for dynamic loading condition and strengthening cost than the conventional externally bonded strengthening using fiber sheet. However, to widely apply NSM method for the concrete railroad bridge, it needs that the strengthening ratio has to be reasonably evaluated with geometrical and material uncertainties, especially for the concrete bridge under long-term service state without the apparent design history and detail information such as concrete compressive strength, reinforcing ratio, railroad characteristics. The purpose of this study is to propose the critical strengthening ratio of CFRP plate for the targeted concrete railroad bridge with uncertainties of deterioration of the structures. To do this, Monte Carlo Simulation (MCS) for geometrical and material uncertainties have been applied so that this approach may bring the reasonable strengthening ratio of CFRP plate considering probabilistic uncertainties for the targeted concrete railroad bridge. Finally, the critical strengthening ratio of NSM strengthened by CFRP plate is calculated by using the limit state function based on the target reliability index of 3.5.

Grid Strut-Tie Model Approach for Structural Concrete Design (콘크리트 구조부재의 설계를 위한 격자 스트럿-타이 모델 방법)

  • Yun, Young Mook;Kim, Byung Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.621-637
    • /
    • 2006
  • Although the approaches implementing strut-tie models are the valuable tools for designing discontinuity regions of structural concrete, the approaches of the current design codes have to be improved for the design of structural concrete subjected to complex loading and geometrical conditions because of the uncertainties in the selection of strut-tie model, in the use of an indeterminate strut-tie model, and in the effective strengths of struts and nodal zones. To improve the uncertainties, a grid struttie model approach is proposed in this study. The proposed approach, allowing to perform a consistent and effective design of structural concrete, employs an initial grid strut-tie model in which various load combinations can be considered. In addition, the approach performs an automatic selection of an optimal strut-tie model by evaluating the capacities of struts and ties using a simple optimization algorithm. The validity and effectiveness of the proposed approach is verified by conducting the analysis of the four reinforced concrete deep beams tested to failure and the design of shearwalls with two openings.

Analysis of Load Value acting Free Falling Object according to Disturbance using Nonlinear Load Control Model (비선형 하중 제어 모델에서 외란에 따른 자유낙하 물체에 작용하는 하중값 분석)

  • Wang, Hyeon-Min;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.55-59
    • /
    • 2010
  • Recently it is tried to use load control model for maneuver moving object. MIN design method proposed to solve control problem of nonlinear system using load concept. The Min design method shows direct method for finding control value on the load control model. In this paper, is shown realization free falling model using nonlinear load control model and analysis of load values acting falling object according to disturbance. And made a trajectory according to acting load values due to disturbance. This paper's result is able to be applied to design algorithm for improvement accuracy of MLRS, GPS air-to-surface missile(ASM) and returning spacecraft with nonlinear model predictive control.

Uncertainty Analysis of Long-Term Behavior of Reinforced Concrete Members Under Axial Load (축력을 받는 철근콘크리트조 부재 장기거동 예측의 불확실성 분석)

  • Yoo, Jae-Wook;Kim, Seung-Nam;Yu, Eun-Jong;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.343-350
    • /
    • 2014
  • A probabilistic construction stage analysis using the Monte Carlo Simulation was performed to address the effects of uncertainty regarding the material properties, environmental factors, and applied forces. In the previous research, creep and shrinkage were assumed to be completely independent random variables. However, because of the common influencing factors in the material models for the creep and shrinkage estimation, strong correlation between creep and shrinkage can be presumed. In this paper, an Monte Carlo Simulation using CEB-FIB creep and shrinkage equations were performed to actually evaluate the correlation coefficient between two phenomena, and then another Monte Carlo Simulation to evaluate the statistical properties of axial strain affected by partially correlated random variables including the material properties, environmental factors, and applied forces. The results of Monte Carlo Simulation were compared with measured strains of a column on a first story in a 58-story building. Comparison indicated that the variation due to the uncertainty related with the material properties were most severe. And measured strains was within the range of mean+standard deviation.

A Study of Strength of Stress Block and Analysis of the Flexural Deformation for Concrete Structures (300kgf/$\textrm{cm}^2$, 500kg/$\textrm{cm}^2$, 700kgf/$\textrm{cm}^2$) using Reliablity Theory (신뢰성 이론을 이용한 (300kgf/$\textrm{cm}^2$, 500kg/$\textrm{cm}^2$, 700kgf/$\textrm{cm}^2$) 콘크리트 구조물의 휨변형 해석과 응력블럭의 선택에 관한 연구)

  • 최광진;장일영;송재호;홍원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.334-339
    • /
    • 1996
  • 본 연구의 목적은 불확실성이 내포되어 있는 콘크리트 구조물을 신뢰성 이론에 근거한 보통강도, 고강도 콘크리트에서의 휨모멘트-곡률관계와 하중변위관계를 해석하는데 그 목적을 두고 있다. 또한 기존의 해석방법과 본 연구에서의 해석방법을 비교하고 각 강도별로 기존에 제안된 응력블럭을 가정, 강도별에 알맞은 응력블럭을 검증하고 본 연구의 해석방버벵 대한 타당성을 증명하는 데 있다. 그래서 기존의 문헌을 통하여 공시체 데이터($\Phi$10$\times$20)에 대한 회귀분석을 이용하여 각 강도별로 곡선식을 모델화하여 제안하였고 이 식을 이용하여 불확실성을 내포하고 있는 몬테카롤로 시뮬레이션을 사용하여 내력을 평가하여 기존연구 해석치와 각 응력블럭을 이용한 본 연구에서의 해석치를 비교검토하여 이 해석방법의 타당성을 증명하는데 있다.

  • PDF

Probabilistic Analysis of Equivalent Uniformly Distributed Live Loads (등가등분포 적재하중의 확률론적 분석)

  • 김상효;정시현;조형근
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 1989
  • Since 1960's, structural engineers have recognized that the inherent random nature of loadings and materials as well as the imperfect structural analysis may be important factors in the structural safety evaluation. Based on the successful developments of the reliability-based structural analysis and design, the design criteria of the standards are recently developed(or modified) in the light of the probabilistic concepts. To develop the probability - based criteria for the domestic buildings, the probabilistic characteristic of loadings acting on structures should be defined first. In this study, therefore, live load data on apartment buildings have been collected and analyzed in systematic manner, and their probabilistic characteristics have been studied. Based on the results, the lifetime extreme values are computed and compared with current design loads. More rational design loads are suggested, which are more consistent in the probabilistic concepts.

  • PDF