• Title/Summary/Keyword: 하중 불확실성

Search Result 184, Processing Time 0.029 seconds

Reliability Analysis of Ship Deck Structure (선체상갑판의 신뢰성해석)

  • S.J.,Yim;Y.S.,Yang;K.T.,Chung;C.W.,Kim;Y.S.,Suh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.9-20
    • /
    • 1989
  • It is important to enhance the safety of ship structures as much as possible in order to prevent the disastrous collapse of structures. In fact, the strength problem of structures is closely related with the safety problem of structures. Recently, the direct calculation method using a rational approach based on the first principle is implemented into the structural design process instead of adopting empirical approach based on the rules. The structural designer have shown increased concern with the problem of adequacy of conventional design method based on the safety factor since it does not fully take into account some degree of variability of the applied loads on and the strength of ship structures. To deal with the analysis of structures effectively, it is necessary to have three stages being equally treated. The first one is load analysis, second one response analysis, third one safety analysis. For marine structures, most of research effort has been however put into the first and second stages. The third stage is normally done by simple procedures. Hence, the various probabilistic methods are compared in order to establish the reliability analysis techniques for ship structures. As a result, the advanced level 2 method is selected as a most effective and accurate reliability method. The validity of this method is further demonstrated by comparing the results with the conventional method for the problem of the longitudinal strength of hull girder of Ro-Ro ship.

  • PDF

Evaluation of Partial Safety Factors on Sliding of Monolithic Vertical Caisson of Composite Breakwaters (혼성제 직립 케이슨의 활동에 대한 부분안전계수 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon;Kwon, Hyuk-Jae;Lee, Sun-Yong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.267-277
    • /
    • 2009
  • Partial safety factors of the load, resistance, and reliability function are evaluated according to the target probability of failure on sliding mode of monolithical vertical caisson of composite breakwaters. After reliability function is formulated for sliding failure mode of caisson of composite breakwaters regarding bias of wave force, uncertainties of random variables related to loads, strengths are analyzed. Reliability analysis for the various conditions of water depth, geometric, and wave conditions is performed using Level II AFDA model for the sliding failure. Furthermore, the reliability model is also applied to the real caisson of composite breakwaters of Daesan, Dong- hae, and Pohang harbor. By comparing the required width of caisson of composite breakwater according to target probability of failure with the other results, the partial safety factors evaluated in this study are calibrated straightforwardly. Even though showing a little difference on the 1% of target probability, it may be found that the present results agree well with the other results in every other target probability of failure.

Fragility Assessment of Offshore Wind Turbine by Ship Collision (선박충돌에 의한 해상풍력발전기의 취약도 평가)

  • Cho, Byung Il;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.236-243
    • /
    • 2013
  • Offshore wind turbines has to be proved against accidental events such as ship collision. In this study, ship collision fragility analysis of offshore wind turbine is done. Dynamic collision analysis is accomplished by considering soil foundation interaction and fluid structure interaction. Uncertainties due to ship weight and speed, angle are also considered. By analyzing dynamic response of offshore wind turbine, fragility curves are obtained for different damage levels. They can be used for restricting boat speed around the wind turbine and allowable size of the boat for inspection and for other purposes. Results of the fragility, it was confirmed fragility of collision speed of bulk ship of 30,000DWT and 850ton barge ship.

A study on the effect of support structure of steel rib in partitioning excavation of tunnel (터널 상·하반 분할 굴착 시 강지보재 지지구조 효과에 대한 연구)

  • Kim, Ki-Hyun;Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Choi, Yong-Kyu;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.543-561
    • /
    • 2020
  • This paper is the result of the study on the effect of the support structure of the tunnel steel rib. In tunnel excavation, the top and bottom half excavation methods result in subsidence of steel rib reinforcement due to insufficient support of steel rib reinforcement when the ground is poor after excavation. The foundation of the steel rib installed in the upper half excavates the bottom part of the base, causing the subsidence to occur due to various effects such as internal load and lateral pressure. As a result, the tunnel is difficult to maintain and its safety is problematic. To solve these problems, steel rib support structures have been developed. For the purpose of verification, the behavior of the supporting structure is verified by model experiments reduced to shotcrete and steel rib material similarity, the numerical analysis of ΔP and ΔP generated by bottom excavation by Terzaghi theoretical equation. As a result, it was found that the support structure of 20.100~198.423 kN is required for the 10~40 m section of the depth for each soil of weathered soil~soft rock. In addition, as a result of the reduced model experiment, a fixed level of 50% steel rib deposit of steel rib support structure was installed. The study shows that the installation of steel rib support structures will compensate for uncertainties and various problems during construction. It is also thought that the installation of steel rib support structure will have many effects such as stability, economy, and air reduction.

Comparison of Safety Margin of Shallow Foundation on Weathered Soil Layer According to Design Methods (설계법에 따른 풍화토 지반 얕은기초의 안전여유 비교)

  • Kim, Donggun;Hwang, Huiseok;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.55-64
    • /
    • 2016
  • In this paper bearing capacity and safety margin of shallow foundation on weathered soil ground against shear failure by using current design method of allowable stress design (ASD), load resistance factor design (LRFD) based on reliability analysis and partial safety factor design (PSFD) in Eurocode were estimated and compared to each other. Results of the plate loading test used in construction and design were collected and analysis of probability statistics on soil parameters affecting the bearing capacity of shallow foundation was performed to quantify the uncertainty of them and to investigate the resistance bias factor and covalence of ultimate bearing capacity. For the typical sections of shallow foundation in domestic field as examples, reliability index was obtained by reliability analysis (FORM) and the sensitivity analysis on soil parameters of probability variables was performed to investigate the effect of probability variable on shear failure. From stability analysis for these sections by ASD, LRFD with the target reiability index corresponding to the safety factor used in ASD and PSDF, safety margins were estimated respectively and compared.

Hybrid Control System Using On-Off Type LQG Algorithm (On-Off 형태의 LQG 알고리즘을 이용한 복합제어 시스템)

  • Jung Hyung-Jo;Yoon Woo-Hyun;Lee In-Won;Park Kyu-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.227-243
    • /
    • 2005
  • This paper presents a hybrid control system combining lead rubber bearings and hydraulic actuators for seismic response control of a cable stayed bridge. Because multiple control devices are operating, a hybrid control system could improve the control performances. However, the overall system robustness may be impacted negatively by additional active control devices. Therefore, a secondary on-off type controller according to the responses of lead rubber bearings is combined with LQG algorithm to improve the controller robustness. Numerical simulation results show that control performances of the hybrid system controlled by an on off type LQG algorithm are improved compared to those of the passive and active control systems and are similar to those of performance oriented hybrid system controlled by a LQG algorithm with the similar peak and normed control forces. Furthermore, it is verified that the hybrid system with an on-off type LQG controller is more robust for stiffness matrix perturbation than conventional hybrid control of system, and there are no signs of instability in the overall system. The proposed control system also maintains the control performance under not only the design earthquakes but also the other earthquakes. Therefore, the hybrid control system using on-off type LQG algorithm could be proposed as an improved control strategy for seismically excited cable-stayed bridges containing many uncertainties.

Prediction of the Intensity of Vibration Around the Crossing Part of Manganese Turnout (망간분기기 크로싱부 인근의 진동 발생수준 예측)

  • Eum, Ki-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.61-66
    • /
    • 2008
  • In railroad operation, turnout is the device designed to provide very critical functions of moving the train to the neighboring rail. It's the only movable section among the rail and track equipment, which has a complicated structure and as rapid movement between the wheel and rail during operation is unavoidable, the safety and the vibration caused by the impact load of the passing train becomes always the major concern. Response to rail vibration tends to vary depending on physical properties of the rail, rail base and the ground, making it difficult to estimate the quantitative outcome through the measurement. Thus, experimental or empirical approach, rather than an analytic method, has been more commonly employed to deal with the ground vibration. To predict the vibration of the turnout, an experimental value and the measured values are applied in parallel to the factors with a high degree of uncertainty. This study hence was intended to compare and analyze the vibration values measured at the crossing part of manganese turnout by type of train and turnout and distance, as well as predict the intensity of vibration generated at the crossing part of manganese turnout when tilting train accelerates.

Reliability Assessment of Concrete Beams Reinforced with GFRP Bars (FRP 보강근을 사용한 콘크리트 보의 신뢰성 해석)

  • Nam, Ho-Yun;Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.185-188
    • /
    • 2008
  • Fiber reinforced polymer(FRP) bars are proving to be a valuable solution in the corrosion problem of steel reinforced concrete structures. As such, a number of guidelines for their use have been developed. These guidelines are primarily based on modifications to existing codes of practice for steel reinforced concrete structures. These guidelines are also similar in that though the design equations are presented in the partial factor formats that are often used in probability based design, they are not true probabilistic codes. Instead, they typically make use of already existing design factors for loads and resistances. Thus, when concrete structures reinforced FRP bars are designed, the structural reliability levels are not known. This paper investigates uncertainties of concrete beams reinforced with GFRP bars. Also, the structural reliability levels are evaluated for the flexural failure mode.

  • PDF

Seismic Response Control of Structures Using Decentralized Response-Dependent MR Dampers (분산제어식 응답의존형 MR 감쇠기를 이용한 구조물의 지진응답제어)

  • Youn, Kyung-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.761-767
    • /
    • 2007
  • In centralized control system, complicated control systems including sensors, power supply and dampers should be required to satisfy the target response of large-scale structures. The practical applications of the centralized control system, however, is very difficult due to high order finite element model of structures, uncertainty of models, and limitations of the excitation system. In this study, the decentralized response-dependent MR damper of which magnetic field is automatically modulated according to the displacement or velocity transferred to the damper without any sensing and computing systems. this decentralized response-dependent MR damper are investigated according to the ranges of relative magnitude between the control force of MR damper and the story shear force of structures by nonlinear time history analysis. Finally, its performance is compared with centralized LQR algorithm which is used in general centralized control theory for a three story building structure.

A Development of Dam Risk Analysis Model Using Bayesian Network Model in Hydrologic (Bayesian Network(BN) 모형을 활용한 수문학적 댐 위험도 해석 기법 개발)

  • Kim, Jin Young;Kim, Jin-Guk;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.501-501
    • /
    • 2015
  • 댐과 같은 수공구조물의 치수능력부족은 구조물의 파손이나 붕괴로 직결되며, 대규모 재산피해와 인명피해가 불가피하다. 또한 최근 기후변화 현상에 의해 발생되고 있는 예상치 못한 큰 강우와 홍수는 댐 안전을 저하하는 요소로 간주되며, 복합적으로 발생시 댐의 치수능력이 크게 저하되어 댐 파괴에 영향을 미칠 가능성이 크다. 또한 ICOLD, 세계대댐회 등의 조사 결과 댐 파괴에 큰 영향을 미치고 있는 수문학적 요소로서 예상치 못한 강우, 홍수 및 월류로 조사되었다. 이러한 이유로 수문학적 위험인자를 효과적으로 고려하기 위해 2000년도 이후 선진국에서는 위험도 해석 기법을 기반으로 파괴모드, 다양한 하중조건 등을 조합하여 위험도 해석을 통해 댐의 안전도 검토를 실시하고 있다. 따라서 최근 증가하는 기상변동성을 능동적으로 고려하기 위해서는 위험도 해석기반의 수공구조물 안정성 평가기법을 기반으로 하는 종합적인 위험도 해석 방안수립이 요구된다. 이러한 이유로 본 연구에서는 BN 모형 기반의 댐 위험도 적용에 앞서 실증댐을 대상으로 분석을 수행하였으며, 분석 절차는 다음과 같다. 첫째, ICOLD 및 세계대댐회 등 다양한 논문, 보고서 등을 조사하여 댐 붕괴에 가장 큰 영향을 미치는 수문학적 파괴인자를 도출하였다. 둘째, BN 모형 구축시 각 노드는 앞서 도출된 수문학적 파괴인자를 이용하였으며, 각 파괴인자에 적합한 확률분포형을 부여하였다. 마지막으로, 노드별 임계값을 부여하여 상황별 파괴인자의 변화 양상을 도출하였다. 본 연구의 결과로 인해 연구대상댐의 가장 취약한 수문학적 파괴인자 도출이 가능하며, 댐의 보수 보강시 우선순위 의사결정의 지원이 가능 할 것으로 판단된다.

  • PDF