• Title/Summary/Keyword: 하절기 결로

Search Result 129, Processing Time 0.029 seconds

Rising Tendencies of both Tidal Elevation and Surge Level at the Southwestern Coast (서남해안의 해수면 상승과 해일고 증가 경향)

  • Kang, Ju-Whan;Park, Seon-Jung;Park, Min-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.14-24
    • /
    • 2008
  • Recently, rising tendency of high water level is detected at southwestern coast. The result of harmonic analysis shows increasing trend of mean sea level, decreasing trend of the amplitudes of semi-diurnal tidal constituents, and increase of Sa tidal constituent, therefore, additional increase of high water level at Summer season. It shows also that maximum surge level has increased greatly, according to the frequent visit of big typhoon such as RUSA and MAEMI. Considering the correspondence of Sa and typhoon period, namely July${\sim}$September, extraordinary high water level would be more probable. Especially, Mokpo and Jeju would be considered to have many chances of extraordinary high water level in the future.

The Influence of the Landscaping Shade Materials' Porosity on the Mean Radiant Temperature(MRT) of Summer Outdoors (조경용 차양 재료의 공극률이 하절기 옥외공간 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.60-67
    • /
    • 2017
  • The purpose of this study was to evaluate the influence of landscaping shade materials' porosity on the Mean Radiant Temperature (MRT) of summer outdoors. The MRTs were measured under seven different types of black membranes with holes of 8mm diameter at different intervals applied on the top of wooden boxes, and compared with those of four additional control plots with or without shade and lateral boxes. The applied porosities were 0.5, 1, 2, 4, 8, 16%, and 32%, and three groups of three shades were compared sequentially from August 13 to September 8, 2016. The MRTs under the shade without lateral block, no shade with lateral block, and shade with lateral block were $33.08^{\circ}C$, $45.80^{\circ}C$, and $42.3^{\circ}C$, respectively, while that of no-shaded no-lateral screen was $44.26^{\circ}C$, based on records from 11:00 AM to 3:00 PM on the days with a peak globe temperature higher than $30^{\circ}C$. An ANCOVA analysis showed that the MRTs under the shades with 0.5, 1, 2, 4, 8, 16%, and 32% porosities were calculated as 43.40, 43.10, 41.49, 40.43, 39.61, $37.91^{\circ}C$, and $38.12^{\circ}C$, respectively, while that in the no shaded control box was $45.8^{\circ}C$. The curve fitted between MRTs and the porosity showed a U-shaped quadratic function with the minimum MRT at 16% practically or 22.5% statistically.

Use of Pyrosequencing for Characterizing Microbial Community at Phylum Level in Yeongsan River Watershed during Early Summer (Pyrosequencing을 이용한 하절기 영산강 유역의 Phylum 계층의 세균 군집 조사)

  • Chung, Jin;Park, Sang Jung;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.150-155
    • /
    • 2013
  • We have conducted pyrosequencing for freshwater microbial community analyses. Fourteen sites along the Yeongsan river were selected for this study, and samples were collected monthly from May to July, 2012. Total 987,380 reads were obtained from 42 samples and used for taxonomic classification and OTU distribution analysis. Our results showed that high geographical and temporal variation in the phylum level bacterial composition, suggesting that microbial community is a very sensitive parameter affected by the surrounding environments including tributaries and land use nearby. In addition, we conducted an OTU-based Microbial Source Tracking to identify sources of fecal pollution in the same region. From this study Firmicutes was found to be the most influential taxa in this region. Here, we report that the use of pyrosequencing based microbial community analysis may give an additional information on freshwater quality monitoring, in addition to the currently used water quality parameters, such as BOD and pH.

Dynamics of Bacterial Communities Analyzed by DGGE during Cyanobacterial Bloom in Daechung Reservoir, Korea (대청호 수화발생시기의 미생물 다양성 및 계통분류학적 분석)

  • Ko, So-Ra;Ahn, Chi-Yong;Lee, Young-Ki;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.225-235
    • /
    • 2011
  • The change of microbial communities during cyanobacterial bloom was comparatively analyzed by 16S rDNA PCR-DGGE in Daechung Reservoir during 2003~2005. Morphological analysis showed that Cyanophyceae dominated algal community in the bloom. Dominant cyanobacteria were Microcystis, Planktothrix (Oscillatoria), Phormidium and Anabaena. We used 16S rDNA-denaturing gradient gel electrophoresis (DGGE) profiles and phylogenetic affiliations of the DGGE bands to analyze the community structure and diversity of the predominant microbial community. The DGGE band patterns demonstrated that the most frequent bands were identified as Microcystis during the monitoring periods, Planktothrix also dominated on September 2003 and 2004, whereas Anabaena was showed a peak on September 2005 and Aphanizomenon on August 2003. DGGE and phylogenetic analysis provided us new information that could not be obtained by traditional, morphological analysis. The relationship between cyanobacteria and other aquatic bacteria can be traced and their genetic diversity also identified in detail.

Development of Natural Dispersant for Korean Traditional Papermaking( I ) - Viscosity and Papermaking Characteristics of Hydrangea paniculata Mucilage- (한지 제조용 새로운 천연 점질물의 개발 (제1보) -나무수국 점질물의 점도 및 한지 제조 특성 -)

  • 최태호
    • Journal of Korea Foresty Energy
    • /
    • v.23 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • The application of the dispersant is indispensable to the manufacture of Korean traditional paper (Hanji). However the mucilage of which extracted from Abelmoschus manihot root has viscosity drop problem in summertime and synthetic dispersant such as polyacrylamide (PAM) and polyethyleneoxide (PEO) have some problems that under the influence of the quality of. water, cohesion, and bad solubility. This study was carried out not only to develop new natural dispersant that can solve such problems but also to investigate the viscosity and papermaking characteristics of Hydrangea paniculata mucilage. There were no viscosity changes between control and treated mucilage that adjusted to pH 9, heated 6 hours at 40 $^{\circ}C$, and stored heating treatment one for a week at 5 $^{\circ}C$. The treatment of mucilage that adjusted to pH 9 and aged for 120 hours at 4$0^{\circ}C$ resulted in viscosity drop. In the hydrolysis of mucilage, galacturonic acid and glucuronic acid contents were decreased by heating and pH adjusting treatments. Wet web stripping quality and physical properties of Korean traditional paper, which used Hydrangea paniculatamucilage were same or superior to the Abelmoschus manihot root.

  • PDF

Development of a New Air Cooling System Utilizing the Stirling Engine for Preventing Solar Cell from Overheating (태양광 모듈의 과열 방지용 공랭형 스털링기관 냉각 시스템 개발)

  • Kim, Hyoungeun;Park, Chanwoo;Chu, Jinkyung;Keum, Dongyeop;Park, Silro;Kim, Jeongmin;Kim, Daejin
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • In this paper new air-cooling system utilizing Stirling engine was proposed for improving efficiency in solar photovoltaic power generation. The solar cell plate was equipped with semi-circular channel for air flow on the backside. Beta-type Stirling engine was installed on the plate and its flywheel was connected to a motor fan by a transmission belt. A forced convective air flow for heat radiation was generated by the operation of the self-starting Stirling engine. The performance tests for power generation of solar cell with or without the proposed air-cooling system were conducted under halogen lamp. From the experimental results, it was found that decline in output voltage of the solar cell with proposed cooling system was 25% less than that of the solar cell without cooling system.

Effect of Different Production Period of Nursery Plant and Age on the Yield in Different Cropping Type of Everbearing Strawberry (사계성 딸기의 자묘생산시기와 묘령의 차이가 작형별 수량에 미치는 영향)

  • Ra, Sang-Wook;Woo, In-Sik;Kim, Woon-Seop;Seo, Kwan-Seok;Yoon, Wha-Mo;Hur, Il-Bum
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 1998
  • This experiment was carried out to investigate the effect of runner development based on production period and to investigate the yield in different cropping type to nursery plant age. In runner development experiment, heating + lighting + $GA_3$ + cluster removal treatment increased the number of runners by 13.1 times higher in spring season than control(heating only) in overwintering mother-plant. Treatment of 20ppm $GA_3$ was the most effective for runner production in autumn. In nursery plant age experiment, 60 days old nursery plants produced more flower cluster than 40 days old ones. This result indicated that the yield potential was so low that overwintering runners would be adaptable for spring or summer cultivation.

  • PDF

A Study on Material Development for and Application of a Slider of Pantograph (전동차 주습판(Pantograph Slider) 재질개선 및 실차 적용에 관한 연구)

  • Cho, Kyu-Hwa
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.410-418
    • /
    • 2015
  • A slider of the pantograph undergoes uneven and abnormal wear due to sliding contact with the catenary. In the case of rain, the loss of lubricant increases the frictional resistance for the reciprocating motion between the catenary and the slider, accelerating local wear. The slider in the winter should have good wear resistance, which can be achieved through alloy design. Uneven and abnormal wear were not observed in the results of a driving test using a wear resistant slider. It was found that the increased density of the slider enhanced the corrosive effects of Fe-Ti, preventing the occurrence of abnormal wear by maintaining the wear and arc resistance in the rainy season. Also, mechanical and electrical wear did not affect the composition of the slider, and this improved the wear resistance. Inaddition, the slider was applied to an entire train and was tested during driving; ananalysis of the correlation of the catenary was performed, including during the rainy season and the winter season.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Effect of Water Temperature and Culture Density on Growth and Survival of Juvenile Turbot Scophthalmus maximus during Summer Season (하절기 사육수온 및 밀도가 터봇 Scophthalmus maximus 미성어의 성장과 생존에 미치는 영향)

  • Lee, Bae-Ik;Nam, Myung-Mo;Byun, Soon-Gyu;Kim, Yi-Cheong;Lee, Jong-Ha
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.265-271
    • /
    • 2008
  • Upper temperature tolerance of the turbot Scophthalmus maxim us, one of the popular aquaculture species in European community and China, was evaluated in terms of survival and growth at $20^{\circ}C$, $23^{\circ}C$, $26^{\circ}C$, or $29^{\circ}C$. Best growth was achieved at temperature $20^{\circ}C$ in this experiments. The fish exposed to $20^{\circ}C$ or $23^{\circ}C$ were comparable in survival, condition factor and feed conversion efficiency reminiscent of the latter temperature to be agreeable for the fish. The temperature over $23^{\circ}C$ appeared to be the temperatures beyond the fish can tolerate. For instance, the fish exposed to 26 showed mortality of 60.9% by day 60; none of the fish exposed to $29^{\circ}C$ survived beyond day 7. Culture densities between 80 and $200\;fish/m^2$ did not influence the survival, growth, condition factor and specific growth rate of the fish. The final production of the culture density experiment was $10\;kg/m^2$ on average. These results imply that the location where water temperature remains lower than $25^{\circ}C$ during summer can be a candidate site for the turbot aquaculture.