DOI QR코드

DOI QR Code

The Influence of the Landscaping Shade Materials' Porosity on the Mean Radiant Temperature(MRT) of Summer Outdoors

조경용 차양 재료의 공극률이 하절기 옥외공간 평균복사온도에 미치는 영향

  • Lee, Chun-Seok (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Ryu, Nam-Hyung (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology)
  • 이춘석 (경남과학기술대학교 조경학과) ;
  • 류남형 (경남과학기술대학교 조경학과)
  • Received : 2017.02.07
  • Accepted : 2017.03.20
  • Published : 2017.04.30

Abstract

The purpose of this study was to evaluate the influence of landscaping shade materials' porosity on the Mean Radiant Temperature (MRT) of summer outdoors. The MRTs were measured under seven different types of black membranes with holes of 8mm diameter at different intervals applied on the top of wooden boxes, and compared with those of four additional control plots with or without shade and lateral boxes. The applied porosities were 0.5, 1, 2, 4, 8, 16%, and 32%, and three groups of three shades were compared sequentially from August 13 to September 8, 2016. The MRTs under the shade without lateral block, no shade with lateral block, and shade with lateral block were $33.08^{\circ}C$, $45.80^{\circ}C$, and $42.3^{\circ}C$, respectively, while that of no-shaded no-lateral screen was $44.26^{\circ}C$, based on records from 11:00 AM to 3:00 PM on the days with a peak globe temperature higher than $30^{\circ}C$. An ANCOVA analysis showed that the MRTs under the shades with 0.5, 1, 2, 4, 8, 16%, and 32% porosities were calculated as 43.40, 43.10, 41.49, 40.43, 39.61, $37.91^{\circ}C$, and $38.12^{\circ}C$, respectively, while that in the no shaded control box was $45.8^{\circ}C$. The curve fitted between MRTs and the porosity showed a U-shaped quadratic function with the minimum MRT at 16% practically or 22.5% statistically.

하절기 옥외공간에서 조경용 차양 소재의 공극률 차이에 따른 온열환경의 개선 효과를 객관적 물리량으로 검증하기 위해, 도심 건물 옥상에 조성된 암상자 상단에 공극률을 달리한 흑색 막소재의 차양을 설치하고, 그 하부의 평균복사온도의 차이를 계측하여 비교하였다. 적용된 공극률은 각각 0.5, 1. 2, 4, 8, 16, 32% 였으며, 2016년 8월에서 11월까지 세 조씩 순차적으로 비교되었다. 일 최고 흑구온도가 $30^{\circ}C$ 이상인 날의 오전 11시부터 오후 3시까지의 자료를 비교한 결과, 차양과 측벽이 설치되지 않는 개방구의 평균복사온도가 $44.26^{\circ}C$일 때, 무측벽-유차양구, 유측벽-무차양구, 유측벽-유차양구의 값은 각각 33.08, 45.80, $42.03^{\circ}C$로 차양과 측벽 유무에 의한 명확한 차이가 확인되었다. 측정 시기별 평균복사온도 기준치를 보정하기 위하여 대조구의 값을 공변량으로 공극률에 따른 값을 공분산분석(ANCOVA)한 결과, 유측벽-무차양구의 평균 값이 $45.80^{\circ}C$일 때, 0.5, 1, 2, 4, 8, 16, 32% 공극률 차양 하부의 값은 각각 43.40, 43.10, 41.49, 40.43, 39.61, 37.91, $38.12^{\circ}C$로 계산되었다. 공극률과 평균복사온도 사이에는 약 22.5%의 공극률을 최저점으로 하는 U자형의 2차 함수의 관계가 있는 것으로 분석되었다. 결론적으로, 본 연구를 통해서 차양의 공극률이 높아질수록 일정 수준까지는 평균복사온도를 저감시키는 효과가 있음을 확인할 수 있었으며, 그 한계값은 물리적 측정치로는 16%였으며, 통계적 추정치로는 약 22.5%였다.

Keywords

References

  1. Ahn, T. M., J. W. Lee, B. R. Kim, H. S. Yoon, S. W. Son, Y. Choi, N. R. Lee, J. Y. Lee and H. R. Kim(2013) An analysis of thermal comforts for pedestrians by WBGT measurement on the urban street greens. Journal of the Korean Institute of Landscape Architecture 41(3): 22-30. https://doi.org/10.9715/KILA.2013.41.3.022
  2. Al-Hela,l I. M. and A. M. Abdel-Ghany(2011) Measuring and evaluating solar radiative properties of plastic shading nets. Solar Energy Materials & Solar Cells 95: 677-683. https://doi.org/10.1016/j.solmat.2010.09.039
  3. Brown, R. D. and T. J. Gillespie(1995) Microclimatic Landscape Design, John Wiley & Sons, pp. 63-79.
  4. Brown R. D.(2010) Design With Mircroclimate. Island Press. pp. 144-147.
  5. Choi, D. H. and B. Y. Lee(2007) Analysis of passive cooling effect of membrane shading structure and the tree by field observations in the summer. Journal of the Korean Solar Energy Society 27(4): 137-146.
  6. He, J. and A. Hoyano(2009) Measurement and simulation of the thermal environment in the built space under a membrane structure. Building and Environment 44: 1119-1227. https://doi.org/10.1016/j.buildenv.2008.08.003
  7. Holcman, E. and P. C. Sentelhas(2012) Microclimate under different shading screens in greenhouses cultivated with bromeliads. Revista Brasileira de Engenharia Agricola e Ambiental 16(8): 858-863. https://doi.org/10.1590/S1415-43662012000800007
  8. Lee, C. S. and N. H. Ryu(2014) The comparison of the solar radiation and the Mean Radiant Temperature(MRT) under the shade of landscaping trees in summertime. Journal of the Korean Institute of Landscape Architecture 42(5): 22-30. https://doi.org/10.9715/KILA.2014.42.5.022
  9. Lee, C. S. and N. H. Ryu(2015) The influence of the landscapeing shade membrane's brightness on the Mean Radiant Temperature (MRT) of summer outdoor. Journal of the Korean Institute of Landscape Architecture 43(5): 65-73. https://doi.org/10.9715/KILA.2015.43.5.065
  10. Potchter, O.. Y. Yaakov, L. Shashua-Bar, S. Cohen, J. Tanny and P. Bar-Kutiel(2011) The use of urban vegetation as a tool for heat stress mitigation in hot and arid regions, case study: Beer Sheva Israel. City Weather: Meteorology and Urban Design 1950-2010: 1-13.
  11. Ryu, N. H. and C. S. Lee(2014) Effects for the thermal comfort index improvement of park woodlands and lawns in summer. Journal of the Korean Institute of Landscape Architecture 42(6): 21-30. https://doi.org/10.9715/KILA.2014.42.6.021
  12. Toy, S. and S. Yilmaz(2010) Evaluation of urban-rural bioclimatic comfort differences over a ten-year period in the sample of Erzincan city reconstructed after a heavy earthquake. Atmosfera 23(4): 387-402.
  13. Watanabe, S., S. Konezawa, T. Horikoshi and A. Tomita(2008) Measurement of solar radiation absorption of different clothing fabric for outdoor thermal comfort study. Japan Journal of Biometeorology 45 (4): 121-129.
  14. Yoshida A., S. Kinoshita and H. I. Murakami(2006) Measurement on radiative properties of membrane material for construction and analysis of reduction effect of heat island phenomena. Journal of Heat Island Institute International Vol. 1: 37-40.
  15. ISO 7726(2001) Ergonomics of the thermal environment - Instruments for measuring physical quantities.
  16. Bosch Sensors(2016) http://www.bosch-sensoren.de
  17. Comfile Technology(2016) http://www.comfile.co.kr