• Title/Summary/Keyword: 하이퍼 매개변수

Search Result 19, Processing Time 0.034 seconds

Accurate dam inflow predictions using SWLSTM (정확한 댐유입량 예측을 위한 SWLSTM 개발)

  • Kim, Jongho;Tran, Trung Duc
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.292-292
    • /
    • 2021
  • 최근 데이터 과학의 획기적인 발전으로 딥러닝(Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 기반으로 정확한 댐유입량 예측을 수행하는 SWLSTM 모델을 제안하였다. SWLSM은 모델의 정확도를 개선하기 위해 세 가지 주요 아이디어를 채택하였다. (1) 통계적 속성 (PACF) 및 교차 상관 함수(CCF)를 사용하여 적절한 입력 변수와 시퀀스 길이를 결정하였다. (2) 선택된 입력 예측 변수 시계열을 웨이블릿 변환(WT)을 사용하여 하위 시계열로 분해한다. (3) k-folds cross validation 및 random search 기법을 사용하여 LSTM의 하이퍼 매개변수들을 효율적으로 최적화하고 검증한다. 제안된 SWLSTM의 효과는 한강 유역 5개 댐의 시단위/일단위/월단위 유입량을 예측하고 과거 자료와 비교함으로써 검증하였다. 모델의 정확도는 다양한 평가 메트릭(R2, NSE, MAE, PE)이 사용하였으며, SWLSTM은 모든 경우에서 LSTM 모델을 능가하였다. (평가 지표는 약 30 ~ 80 % 더 나은 성능을 보여줌). 본 연구의 결과로부터, 올바른 입력 변수와 시퀀스 길이의 선택이 모델 학습의 효율성을 높이고 노이즈를 줄이는 데 효과적임을 확인하였다. WT는 홍수 첨두와 같은 극단적인 값을 예측하는 데 도움이 된다. k-folds cross validation 및 random search 기법을 사용하면 모델의 하이퍼 매개변수를 효율적으로 설정할 수 있다. 본 연구로부터 댐 유입량을 정확하게 예측한다면 정책 입안자와 운영자가 저수지 운영, 계획 및 관리에 도움이 될 것이다.

  • PDF

Predictions of dam inflow on Han-river basin using LSTM (LSTM을 이용한 한강유역 댐유입량 예측)

  • Kim, Jongho;Tran, Trung Duc
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.319-319
    • /
    • 2020
  • 최근 데이터 과학의 획기적인 발전 덕분에 딥러닝 (Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 사용하여 댐 유입량을 예측하였다. 구체적인 내용으로, (1) LSTM에 필요한 입력 데이터를 효율적으로 사전 처리하는 방법, (2) LSTM의 하이퍼 매개변수를 결정하는 방법 및 (3) 다양한 손실 함수(Loss function)를 선택하고 그 영향을 평가하는 방법 등을 다루었다. 제안된 LSTM 모델은 강우량(R), 댐유입량(Q) 기온(T), 기저유량(BF) 등을 포함한 다양한 입력 변수들의 함수로 가정하였으며, CCF(Cross Correlations), ACF(Autocorrelations) 및 PACF(Partial Autocorrelations) 등의 기법을 사용하여 입력 변수를 결정하였다. 다양한 sequence length를 갖는 (즉 t, t-1, … t-n의 시간 지연을 갖는) 입력 변수를 적용하여 데이터 학습에 최적의 시퀀스 길이를 결정하였다. LSTM 네트워크 모델을 적용하여 2014년부터 2020년까지 한강 유역 9개의 댐 유입량을 추정하였다. 본 연구로부터 댐 유입량을 예측하는 것은 홍수 및 가뭄 통제를 위한 필수 요건들 중 하나이며 수자원 계획 및 관리에 도움이 될 것이다.

  • PDF

Comparative assessment of ensemble kalman filtering and particle filtering for lumped hydrologic modeling (집중형 수문모형에 대한 앙상블 칼만필터와 파티클 필터의 수문자료동화 특성 비교)

  • Garim Lee;Bomi Kim;Songhee Lee;Seong Jin Noh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.233-233
    • /
    • 2023
  • 효율적인 수자원 관리에 필수적인 요소 중 하나는 유역 유출의 정확한 예측이다. 동일한 유역이라 할지라도 과거 기후조건에 대해 매개변수나 모형구조가 최적화된 수문모형은 현재나 미래 기후에 대해 최적이라 할수 없으며, 이에 따라 유역 유출 해석의 불확실성 또한 증가하고 있다. 수문자료동화는 모형의 입력 자료에 따른 불확실성을 줄이고 예측정확도를 향상 시킬 수 있는 방법으로, 수문모형의 상태량이나 매개변수를 업데이트하여 모형 초기 조건의 가능성 높은 추정치를 생성하는 기법이다. 본 연구에서는 국내 댐 상류 유역에 대해 집중형 수문모형과 순차자료동화 기법의 연계 패키지인 airGRdatassim 모형을 적용하여, 앙상블 칼만 필터와 파티클 필터 기법의 수문자료동화 특성을 비교 분석하고, 자료동화와 관련된 하이퍼-매개변수의 불확실성이 수문모의 성능에 미치는 영향을 분석하였다. 자료동화 적용 결과, 두 자료동화 기법 중 파티클 필터에 의한 모의성능이 높았으며 기상강제력 노이즈의 범위, 갱신 대상 상태량 설정, 앙상블 설정 등 수문자료동화의 설정과 관련된 하이퍼 매개변수의 불확실성은 두 기법별 뚜렷한 차이를 보였다. 또한, 본 연구에서는 일단위에서 시단위로 확장한 유량 예측 자료동화의 시험 모의결과 및 앙상블 수문동화기법의 도전과제에 대해서도 논의한다.

  • PDF

Improvement of Basis-Screening-Based Dynamic Kriging Model Using Penalized Maximum Likelihood Estimation (페널티 적용 최대 우도 평가를 통한 기저 스크리닝 기반 크리깅 모델 개선)

  • Min-Geun Kim;Jaeseung Kim;Jeongwoo Han;Geun-Ho Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.391-398
    • /
    • 2023
  • In this paper, a penalized maximum likelihood estimation (PMLE) method that applies a penalty to increase the accuracy of a basis-screening-based Kriging model (BSKM) is introduced. The maximum order and set of basis functions used in the BSKM are determined according to their importance. In this regard, the cross-validation error (CVE) for the basis functions is employed as an indicator of importance. When constructing the Kriging model (KM), the maximum order of basis functions is determined, the importance of each basis function is evaluated according to the corresponding maximum order, and finally the optimal set of basis functions is determined. This optimal set is created by adding basis functions one by one in order of importance until the CVE of the KM is minimized. In this process, the KM must be generated repeatedly. Simultaneously, hyper-parameters representing correlations between datasets must be calculated through the maximum likelihood evaluation method. Given that the optimal set of basis functions depends on such hyper-parameters, it has a significant impact on the accuracy of the KM. The PMLE method is applied to accurately calculate hyper-parameters. It was confirmed that the accuracy of a BSKM can be improved by applying it to Branin-Hoo problem.

Development of data assimilation technique using a surrogate model (대체모형을 이용한 자료동화기법 개발)

  • Kim, Jongho;Tran, Vinh Ngoc
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.381-381
    • /
    • 2020
  • 자료동화(Data Assimilation) 기법은 실시간 수문학적 예측에 있어 정확도 향상을 위해 필수적인 과정이다. 가장 대중적으로 사용되는 기법들 중 하나가 모델 상태변수와 매개변수를 동시에 업데이트할 수 있는 이중 앙상블 칼만 필터(Dual Ensemble Kalman Filter)이다. 이 방법은 정확도 개선 및 적용의 용이성 때문에 많은 연구 분야에서 사용되어져 왔지만, 앙상블을 생성하는 과정에서 상당시간이 소요되는 단점이 존재한다. 본 연구에서는 상태변수와 매개변수를 동시에 업데이트 하면서 홍수 예측의 정확성을 보장할 뿐만 아니라, 앙상블 생성에 있어 계산 효율을 크게 향상시킬 수 있는 기법을 제안한다. Polynomial Chaos Expansion(PCE) 기법을 사용하여 앙상블 칼만 필터를 모방(mimic)할 수 있는 새로운 대체필터(Surrogate Filter)를 개발하는 것을 목표로 한다. 구체적으로 대체필터를 구성하기 위한 다양한 필터를 설계하였다. 첫째 시간에 대해서 PCE가 변화하지 않는 '불변 필터'(즉, 전체 예측기간에 대해 하나의 필터를 사용하여 자료동화할 수 있는 대체필터)와, 매 시간마다 PCE가 변화하는 '시변 필터'(즉, 예측하는 매 시간마다 새로운 필터를 생성해야 하는 대체필터)를 설계하여 적용성, 정확성, 예측성 등을 비교하였다. 또한, PCE의 하이퍼 매개변수를 최적화하기 위한 최적의 프레임 워크가 제안되어, 대체필터를 구축하는 데 효율을 높이고 PCE의 과적합(overfitting) 현상을 피할 수 있도록 하였다. 본 연구에서 제안된 기법은 기존 단일 및 이중 앙상블 칼만 필터(EnKF)의 결과와 비교 검증하였으며, 그 결과는 다음과 같다. (1) 대체필터의 대부분은 원래 EnKF와 비슷한 정도의 불확실성을 설명할 수 있음; (2) 모든 대체 필터는 선행시간이 짧은 경우의 예측에 있어 우수한 결과를 제공하며, 시변 필터가 불변 필터보다 더 정확한 예측 결과를 제공함; (3) 대체필터는 원래 앙상블 칼만필터보다 최대 500배 빠른 속도로 성능을 향상시킬 수 있음. 제안된 대체필터는 자료동화를 수행하는 기존필터와 비슷한 정도의 정확성, 매우 향상된 효율성을 보장함을 확인할 수 있었다.

  • PDF

Correlation Analysis with Vegetation Indices and Vegetation-Endmembers From Airborne Hyperspectral Data in Forest Area (산림지역의 항공기 탑재 하이퍼스펙트럴 영상에 대한 식생-Endmember와 식생지수의 상관 분석)

  • Kim, Tae-Woo;We, Gwang-Jae;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.52-65
    • /
    • 2012
  • The net biomass accumulation (or net primary production, NPP) and gross primary production (GPP) have closely related with carbon accumulations(or carbon exchange) in vegetation. There are many approaches to estimate biomass using remote sensing techniques. The vegetation indices (VIs) can be a methodology to estimate biomass which assumes total chlorophyll contents. Various VIs were characterized with difference development conditions as vegetation species, input datasets. The hyperspectral data have also different spatial/spectral resolutions for aerial surveying. Additionally they need particular spectral bands selection difficulty to calculate the VIs. The objective of this study is to evaluate the correlations with airborne hyperspectral data (compact airborne spectrographic imager, CASI) and spectral unmixing model (or spectral mixture analysis, SMA) to characterize vegetation indices in forest area. The spectral mixture analysis was used to model the spectral purity of each pixel as an endmember. The endmembers are the fraction components derived from hyperspectral data through the SMA. In this study, we choose three endmembers represented vegetation pixels in the hyperspectral data. These endmembers were compared with 9 VIs by the Pearson's correlation coefficient. The results show MTVI1 and TVI have same correlation coefficient with 0.877. The MCARI, especially has very high relationship with vegetation endmembers as 0.9061 at less vegetation and soil distributed site. The MTVI1 and TVI have high correlations with the vegetation endmembers as 0.757 in whole test sites.

Recommender System Development Based on Wine Review Big Data Analysis and Deep Learning (와인 후기 빅 데이터 분석과 딥러닝 기반 추천 시스템 개발)

  • Ji, Hong-Geun;Lee, Tae-Ki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.763-766
    • /
    • 2019
  • 최근 사람들의 삶의 질이 향상됨에 따라 기호품인 와인의 수요가 늘어나고 있다. 그러나 와인은 생산하는데 길게는 수십 년이 걸리는 고가의 제품이므로 소비자가 와인과 잘못 구매했을 때의 기회비용이 크다. 본 논문에서는 전문 와인 테이스터 들의 후기 빅 데이터를 활용하여 딥러닝 기반 추천시스템을 개발을 다룬다. 테이스터 들의 후기 빅 데이터에 대해 Apache Pig와 자연어 처리를 통한 전 처리 과정을 수행해 리뷰 별로 특징 벡터를 구성하고, 하이퍼 매개변수 최적화와 조기 종료 기법을 사용해 데이터에 대하여 최적의 딥러닝 분류기를 구성하였다. 마지막으로, 구성된 시스템의 신뢰도를 검증하기 위해서 딥러닝의 정확도와 오차율을 확인하였고 시스템이 추천한 와인을 시각화 이미지와 비교하여 성능을 검증하였다.

LSTM model predictions of inflow considering climate change and climate variability (기후변화 및 기후변동성을 고려한 LSTM 모형 기반 유입량 예측)

  • Kwon, jihwan;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.348-348
    • /
    • 2022
  • 미래에 대한 기후는 과거와 비교하여 변동성이 더 크고 불확실성 또한 더 크기 때문에 미래의 기후변화를 예측하기 위해서는 기후변화의 절대적인 크기뿐 아니라 불확실한 정도도 함께 고려되어야 한다. 본 연구에서는 CMIP6(Coupled Model Intercomparison Project Phase 6) DB에서 제공된 일 단위 18개의 GCMs(General Circulation Models)의 결과를 분석하였으며 또한 3개의SSP(Shared Socioeconomic Pathway)시나리오와 3개의 미래 구간에 대하여 100개의 앙상블을 각각 생성하였다. 불확실성을 초래하는 원인을 3가지로 구분하고, 각각의 원인에 대한 불확실성의 정도를 앙상블 시나리오에 반영하고자 한다. 현재 기간 및 미래 기간에 대해 100개의 20년 시계열 날씨변수 앙상블을 생성하여 LSTM(Long short-term memory)의 입력자료로 사용하여 댐유입량, 저수위, 방류량을 산정하였다. 댐 유입량 및 방류량의 예측성능을 향상시키기 위해 Input predictor의 종류를 선정하는 방법과 그 변수들의 lag time을 결정하는 방법, 입력자료들을 재구성하는 방법, 하이퍼 매개변수를 효율적으로 최적화하는 방법, 목적함수 설정 방법들을 제시하여 댐 유입량 및 방류량의 예측을 크게 향상시키고자 하였다. 본 연구에서 예측된 미래의 댐유입량 및 방류량 정보는 홍수 또는 가뭄 등 다양한 수자원 관련 문제의 전략을 수립하는 데 있어서 적절한 도움이 될 것이다.

  • PDF

Comparative assessment of sequential data assimilation-based streamflow predictions using semi-distributed and lumped GR4J hydrologic models: a case study of Namgang Dam basin (준분포형 및 집중형 GR4J 수문모형을 활용한 순차자료동화 기반 유량 예측 특성 비교: 남강댐 유역 사례)

  • Lee, Garim;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.585-598
    • /
    • 2024
  • To mitigate natural disasters and efficiently manage water resources, it is essential to enhance hydrologic prediction while reducing model structural uncertainties. This study analyzed the impact of lumped and semi-distributed GR4J model structures on simulation performance and evaluated uncertainties with and without data assimilation techniques. The Ensemble Kalman Filter (EnKF) and Particle Filter (PF) methods were applied to the Namgang Dam basin. Simulation results showed that the Kling-Gupta efficiency (KGE) index was 0.749 for the lumped model and 0.831 for the semi-distributed model, indicating improved performance in semi-distributed modeling by 11.0%. Additionally, the impact of uncertainties in meteorological forcings (precipitation and potential evapotranspiration) on data assimilation performance was analyzed. Optimal uncertainty conditions varied by data assimilation method for the lumped model and by sub-basin for the semi-distributed model. Moreover, reducing the calibration period length during data assimilation led to decreased simulation performance. Overall, the semi-distributed model showed improved flood simulation performance when combined with data assimilation compared to the lumped model. Selecting appropriate hyper-parameters and calibration periods according to the model structure was crucial for achieving optimal performance.

Seismic Fragility of I-Shape Curved Steel Girder Bridge using Machine Learning Method (머신러닝 기반 I형 곡선 거더 단경간 교량 지진 취약도 분석)

  • Juntai Jeon;Bu-Seog Ju;Ho-Young Son
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.899-907
    • /
    • 2022
  • Purpose: Although many studies on seismic fragility analysis of general bridges have been conducted using machine learning methods, studies on curved bridge structures are insignificant. Therefore, the purpose of this study is to analyze the seismic fragility of bridges with I-shaped curved girders based on the machine learning method considering the material property and geometric uncertainties. Method: Material properties and pier height were considered as uncertainty parameters. Parameters were sampled using the Latin hypercube technique and time history analysis was performed considering the seismic uncertainty. Machine learning data was created by applying artificial neural network and response surface analysis method to the original data. Finally, earthquake fragility analysis was performed using original data and learning data. Result: Parameters were sampled using the Latin hypercube technique, and a total of 160 time history analyzes were performed considering the uncertainty of the earthquake. The analysis result and the predicted value obtained through machine learning were compared, and the coefficient of determination was compared to compare the similarity between the two values. The coefficient of determination of the response surface method was 0.737, which was relatively similar to the observed value. The seismic fragility curve also showed that the predicted value through the response surface method was similar to the observed value. Conclusion: In this study, when the observed value through the finite element analysis and the predicted value through the machine learning method were compared, it was found that the response surface method predicted a result similar to the observed value. However, both machine learning methods were found to underestimate the observed values.