• Title/Summary/Keyword: 하이퍼레저패브릭

Search Result 27, Processing Time 0.023 seconds

A System Recovery using Hyper-Ledger Fabric BlockChain (하이퍼레저 패브릭 블록체인을 활용한 시스템 복구 기법)

  • Bae, Su-Hwan;Cho, Sun-Ok;Shin, Yong-Tae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.155-161
    • /
    • 2019
  • Currently, numerous companies and institutes provide services using the Internet, and establish and operate Information Systems to manage them efficiently and reliably. The Information System implies the possibility of losing the ability to provide normal services due to a disaster or disability. It is preparing for this by utilizing a disaster recovery system. However, existing disaster recovery systems cannot perform normal recovery if files for system recovery are corrupted. In this paper, we proposed a system that can verify the integrity of the system recovery file and proceed with recovery by utilizing hyper-ledger fabric blockchain. The PBFT consensus algorithm is used to generate the blocks and is performed by the leader node of the blockchain network. In the event of failure, verify the integrity of the recovery file by comparing the hash value of the recovery file with the hash value in the blockchain and proceed with recovery. For the evaluation of proposed techniques, a comparative analysis was conducted based on four items: existing system recovery techniques and data consistency, able to data retention, recovery file integrity, and using the proposed technique, the amount of traffic generated was analyzed to determine whether it was actually applicable.

HFN-Based Right Management for IoT Health Data Sharing (IoT 헬스 데이터 공유를 위한 HFN 기반 권한 관리)

  • Kim, Mi-sun;Park, Yongsuk;Seo, Jae-Hyun
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.88-98
    • /
    • 2021
  • As blockchain technology has emerged as a security issue for IoT, technology which integrates block chain into IoT is being studied. In this paper is a research concerning token-based IoT service access control technology for data sharing, which propose a possessor focused data sharing technic by using the permissioned blockchain. To share IoT health data, a Hyperledger Fabric Network consisting of three organizations was designed to provide a way to share data by applying different access control policies centered on device owners for different services. In the proposed system, the device owner issues access control tokens with different security levels applied to the participants in the organization, and the token issue information is shared through the distributed ledger of the HFN. In IoT, it is possible to lightweight the access control processing of IoT devices by granting tokens to service requesters who request access to data. Furthmore, by sharing token issuance information among network participants using HFN, the integrity of the token is guaranteed and all network participants can trust the token. The device owners can trust that their data is being used within their authorized rights, and control the collection and use of data.

A Study on Implementation of BlockChain Voting System using Hyperledger Fabric (Hyperledger Fabric을 활용한 블록체인 투표시스템 구현에 관한 연구)

  • Hwang, Won-Yong;Kim, Hyo-Kwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.4
    • /
    • pp.298-305
    • /
    • 2020
  • This paper deals with the implementation of electronic voting system using permissioned block chain technology. Cases studies have recently been under way in many industrial areas to review the application of the blockchain based electronic voting system. The existing electronic voting system was easily exposed by hacking because of its centralized characteristics, making it difficult to ensure the reliability and transparency of the voting system itself. In this study, we proposed key considerations and concepts to ensure the reliability and transparency of voters and voting stakeholder by utilizing a hyperledger fabric which is nowadays widely used as a permissioned blockchain.

Hyperledger Fabric and Asymmetric Key Encryption for Health Information Management Server (하이퍼레저 패브릭과 비대칭키 암호화 기술을 결합한 건강정보 관리서버)

  • Han, Hyegyeong;Hwang, Heejoung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.922-931
    • /
    • 2022
  • Recently, the need for health information management platforms has been increasing for efficient medical and IT technology research. However, health information is requiring security management by law. When permissioned blockchain technology is used to manage health information, the integrity is provided because only the authenticated users participate in bock generation. However, if the blockchain server is attacked, it is difficult to provide security because user authentication, block generation, and block verification are all performed on the blockchain server. In this paper, therefore, we propose a Health Information Management Server, which uses a permissioned blockchain algorithm and asymmetric cryptography. Health information is managed as a blockchain transaction to maintain the integrity, and the actual data are encrypted with an asymmetric key. Since using a private key kept in the institute local environment, the data confidentiality is maintained, even if the server is attacked. 1,000 transactions were requested, as a result, it was found that the server's average response time was 6,140ms, and the average turnaround time of bock generation was 368ms, which were excellent compared to those of conventional technology. This paper is that a model was proposed to overcome the limitations of permissioned blockchains.

A Study on Implementation of Humane Resource Pool Recruitment system Using Blockchain

  • Lee, Ji-Woon;Seo, Hee-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.69-78
    • /
    • 2021
  • In this paper, we propose a implementation plan of the human resource pool recruitment system using private (permitted) blockchain. The term Human Resource has become commonly used and has come to recognize human resources as resources. Despite these changes, the use of human resource pools has been sluggish. Once entered, information is often not updated on a regular basis and does not provide sharing, searching, carrier management and anti-counterfeiting. In this research, in order to provide a human resource pool recruitment system that utilizes private (permitted) blockchain, we first used the blockchain network to enable sharing and searching of human resource pools, and to use keywords. Used to get results that meet certain conditions. Second, we added an institutional verification process to ensure the integrity of the input data and prepared preventive measures in the non-technical part by utilizing the structural characteristics of the blockchain to prevent counterfeiting and alteration. Third, we designed and implemented a Dapp (Decentralized application) that includes a Web UI so that each of the three groups can control the blockchain and the predefined processes and business logic.

Blockchain-Based Smart Home System for Access Latency and Security (지연시간 및 보안을 위한 블록체인 기반 스마트홈 시스템 설계)

  • Chang-Yu Ao;Kang-Chul Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.157-164
    • /
    • 2023
  • In modern society, smart home has become a part of people's daily life. But traditional smart home systems often have problems such as security, data centralization and easy tampering, so a blockchain is an emerging technology that solves the problems. This paper proposes a blockchain-based smart home system which consists in a home and a blockchain network part. The blockchain network with 8 nodes is implemented by HyperLeger Fabric platform on Docker. ECC(Elliptic Curve Cryptography) technology is used for data transmission security and RBAC(role-based access control) manages the certificates of network members. Raft consensus algorithm maintains data consistency across all nodes in a distributed system and reduces block generation time. The query and data submission are controlled by the smart contract which allows nodes to safely and efficiently access smart home data. The experimental results show that the proposed system maintains a stable average query and submit time of 84.5 [ms] and 93.67 [ms] under high concurrent accesses, respectively and the transmission data is secured through simulated packet capture attacks.

Analysis of Blockchain Platforms from the Viewpoint of Privacy Protection (프라이버시 보호 관점에서의 블록체인 플랫폼 분석)

  • Park, Ji-Sun;Shin, Sang Uk
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.105-117
    • /
    • 2019
  • Bitcoin, which can be classified as a cryptocurrency, has attracted attention from various industries because it is an innovative digital currency and the beginning of a Blockchain system. However, as the research on Bitcoin progressed, several security vulnerabilities and possible attacks were analyzed. Among them, the security problem caused by the transparency of the Blockchain database prevents the Blockchain system from being applied to various fields. This vulnerability is further classified as the weak anonymity of participating nodes and privacy problem due to disclosure of transaction details. In recent years, several countermeasures have been developed against these vulnerabilities. In this paper, we first describe the main features of the public and private Blockchain, and explain privacy, unlinkability and anonymity. And, three public Blockchain platforms, Dash, Zcash and Monero which are derived from Bitcoin, and Hyperledger Fabric which is a private Blockchain platform, are examined. And we analyze the operating principles of the protocols applied on each platform. In addition, we classify the applied technologies into anonymity and privacy protection in detail, analyze the advantages and disadvantages, and compare the features and relative performance of the platforms based on the computational speed of the applied cryptographic mechanisms.