본 연구는 달착륙선을 위한 하이브리드 추진 시스템의 기초 연구로서 동시 점화 및 산화제 유량 분배를 통한 클러스터링 연구를 수행하였다. 클러스터링 연소 실험을 위해 지상 연소 실험 시스템을 구축하였으며, 산화제와 연료는 각각 기체 산소(gas oxygen)와 고밀도 폴리에틸렌(High Density Poly Ethylene)을 사용하였다. 실험 결과 화약 점화를 사용한 동시 점화 장치는 동일한 시점에 점화가 되었으며, 유량 분배 장치를 통해 비교적 균일하게 산화제 분배가 이루어져 각 연소실 내에서의 압력이 비교적 동일하게 나타난 것을 확인하였다.
무선 센서 네트워크(WSN)에서는 저가 및 저 전력 센서로 구성되기 때문에 센서의 임무를 성공적으로 수행하면서 적은 에너지를 소모하는 것이 중요한 문제로 부각된다. 기존의 클러스터링 WSN에서는 헤드의 결정 및 헤드에 의한 데이터 수집과 전송 방안이 전체 네트워크의 성능에 큰 영향을 준다. 본 논문은 클러스터링 WSN에서 데이터 전송의 방향성을 고려한 하이브리드(Hybrid) 클러스터링 방법을 제안한다. 데이터의 효율적인 전송을 위해 모든 센서노드가 싱크로 데이터를 전송할 때 클러스터헤드를 거쳐 전송할 것인지 클러스터 헤드를 거치지 않고 싱크로 직접 전송할 것인지를 싱크, 헤드위치, 해당 센서노드의 위치에 따라 이원화 하는 하이브리드 라우팅 기법이다. 실험을 통하여 LEACH(Low Energy Adaptive Clustering Hierarchy) 방식과 비교하여 데이터를 싱크에서 역방향으로 전송 하지 않음으로써 거리와 에너지소모를 줄일 수 있음을 확인하였다.
데이터 마이닝은 지식발견 과정에서 중요한 역할을 수행하며, 여러 데이터 마이닝의 알고리즘들은 특정의 목적을 위하여 선택될 수 있다. 대부분의 전통적인 계층적 클러스터링 방법은 적은 양의 데이터 집합을 처리하는데 적합하여 제한된 리소스와 부족한 효율성으로 인하여 대용량의 데이터 집합을 다루기가 곤란하다. 본 연구에서는 대용량의 데이터에 적용되어 알려지지 않은 패턴을 발견할 수 있는 하이브리드형 신경망 클러스터링 기법의 PPC(Pre-Post Clustrering) 기법을 제안한다. PPC 기법은 인공지능적 방법인 자기조직화지도(SOM)와 통계적 방법인 계층적 클러스터링을 결합하여 두 과정에서는 군집의 내부적 특징을 나타내는 응집거리와 군집간의 외부적 거리를 나타내는 인접거리에 따라 유사도를 측정한다. 최종적으로 PPC 기법은 측정된 유사도를 이용하여 대용량 데이터 집합을 군집화한다. PPC 기법은 UCI Repository 데이터를 이용하여 실험해 본 결과, 다른 클러스터링 기법들 보다 우수한 응집도를 보였다.
FCM 알고리즘은 입력 벡터와 각 클러스터의 유클리드 거리를 이용하여 구해진 소속도만를 비교하여 데이터를 분류하기 때문에 클러스터링 된 공간에서의 데이터들의 분포에 따라 바람직하지 못한 클러스터링 결과를 보일 수 있다. 이러한 문제점을 개선하기 위해 대칭적 성질을 이용하는 대칭성 측도에 퍼지 이론을 적용하여 군집간의 거리에 따른 변화와 군집 중심의 위치, 그리고 군집 형태에 따라 영향을 덜 받는 개선된 FCM이 제안되었다. 본 논문에서는 효과적으로 패턴을 분류하기 위해 개선된 FCM 알고리즘을 적용한 개선된 하이브리드 네트워크를 제안한다. 제안된 하이브리드 네트워크는 개선된 FCM 알고리즘을 입력층과 중간층의 학습구조 적용하고 중간층과 출력층의 학습구조는 일반화된 델타학습법을 적용한다. 제안된 방법의 인식성능을 평가하기 위해 2차원 좌표평면 상의 데이터를 기존의 Max_Min 신경망을 이용한 FCM 기반 RBF 네트워크와 FCM 기반 RBF 네트워크, HCM 기반 네트워크와 제안된 방법 간의 학습 및 인식 성능을 비교 및 분석하였다.
본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.
본 논문에서는 위성영상의 분류에 대한 성능 개선을 위하여 ISODATA 클러스터링, 퍼지 C-Means 알고리즘, 베이시안 최대우도 분류기법을 통합한 하이브리드 분류기법을 제안하였다. 본 연구에서는 분석자에 의하여 분류항목별 학습 데이터를 선정한 후 이를 ISODATA 클러스터링을 이용하여 각각의 분류항목별로 분광특징에 따라 학습 데이터를 세분화하여 새로운 학습 데이터를 선정하였다. 새롭게 선정된 학습 데이터를 이용하여 퍼지 C-Means 알고리즘을 이용하여 분류를 수행하고 그 결과를 베이시안 최대우도 분류기의 사전확률로 적용하여 분류를 수행하였다. 그 결과 분석자가 선정한 분류항목별 훈련데이터의 분광적인 특징에 관계없이 분류를 수행할 수 있었으며 위성영상의 분류의 성능을 개선할 수 있었다. 제안된 기법은 Landsat TM 위성영상을 이용하여 그 적용성을 시험하였다.
웹 GIS에서 인터넷 서비스 이용자의 집중 현상으로 발생하는 서버의 과부하 현상을 막기 위한 대표적인 방법으로 클라이언트와 서버가 모두 질의에 참여하는 하이브리드(Hybrid) 질의 처리 방식이 있다. 그러나 하이브리드 질의 처리 방식은 서버 확장에 제약이 존재하기 때문에 근본적인 해결책이 되지 못한다. 따라서 웹 GIS 서버의 안정적인 서비스 제공을 위해서는 웹 클러스터링 기술의 도입이 필요하다. 본 논문에서는 웹 GIS클러스터링 시스템을 위한 질의 영역의 인접성을 이용한 로드 밸런싱 기법을 제안한다. 제안하는 기법은 공간 데이터를 관리하는 타일을 기반으로 인접한 타일 그룹을 생성하여 각 서버에 할당하며, 질의 영역 및 공간 연산을 고려하여 서버에서 질의가 처리되는 동안 버퍼 재사용율이 최대가 되도록 클라이언트의 질의 요청을 서버에 전달한다. 제안하는 기법은 서버의 버퍼를 공간 인덱스 탐색에 최적화함으로써 서버의 버퍼 재사용율을 높이고, 클러스터링 시스템에서 디스크의 접근 횟수를 낮추어 전체적인 서버 시스템의 처리 능력을 향상시킨다.
제조 시계열 데이터 클러스터링 기법은 제조 대용량 데이터 기반 군집화를 통한 설비 및 공정 이상 탐지 분류를 위한 중요한 솔루션이지만 기존 정적 데이터 대상 클러스터링 기법을 시계열 데이터에 적용함에 있어 낮은 정확도를 가지는 단점이 있다. 본 논문에서는 진화 연산 기반 시계열 군집 분석 접근 방식을 제시하여 기존 클러스터링 기술에 대한 정합성 향상하고자 한다. 이를 위하여 먼저 제조 공정 결과 이미지 형상을 선형 스캐닝을 활용하여 1차원 시계열 데이터로 변환하고 해당 변환 데이터 대상으로 Pearson 거리 매트릭을 기반으로 계층적 군집 분석 및 분할 군집 분석에 대한 최적 하위클러스터를 도출한다. 해당 최적 하위클러스터 대상 유전 알고리즘을 활용하여 유사도가 최소화되는 최적의 군집 조합을 도출한다. 그리고 실제 제조 과정 이미지 대상으로 기존 클러스터링 기법과 성능 비교를 통하여 제안된 클러스터링 기법의 성능 우수성을 검증한다.
스마트폰에 탑재된 센서들을 사용하여 사회 조직에서 발생하는 다양한 현상들을 모니터링하는 스마트폰 센싱 분야에서 대규모 데이터 처리 및 품질 향상과 수집된 정보를 공유하기 위해 시멘틱 데이터를 관리하는 것은 중요한 이슈 중에 하나이다. 본 논문에서는 이러한 대규모 시멘틱 데이터 관리 구조에서 서버의 부하를 줄이기 위한 문서 클러스터링 기법을 제안한다. 제안된 클러스터링 기법은 헤드 노드와 멤버노드를 갖는 하이브리드 백엔드 구조에서 서버단의 부하 감소를 위해 유사한 메타데이터를 갖는 노드들로 클러스터를 구성한다. 시뮬레이션을 통해 제안 기법이 기존의 거리기반 클러스터링 기법에 비해 서버부하를 줄일 수 있다는 것을 검증 하였다.
최근 P2P서비스는 인터넷 통신량의 50%를 넘게 차지하고 있다. 순수 P2P 기반 모델의 질의 메커니즘이 메시지 범람을 사용하기 때문에 대규모의 질의 패킷이 생성되기 때문이다. 본 연구에서는 순수 P2P 모델과 복합 P2P모델에서 생성되는 질의 패킷의 수를 분석하였다. 그 결과 복합 P2P모델도 메시지 범람을 발생시킨다는 것을 발견하였다. 이러한 메시지 범람을 감소시키기 위하여 본 연구에서는 복함 P2P 서비스에서의 클러스터링 메커니즘을 제안하였다. 이러한 클러스터링 알고리즘을 적용하게 되면, 약 99.998%의 메시지 범람을 감소시킬 수 있다. 제안된 알고리즘은 전에 사용되었던 슈퍼노드를 저장하므로 써 조인 연산의 비용도 절감할 수 있게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.