• Title/Summary/Keyword: 하이브리드 최적화기법

Search Result 60, Processing Time 0.03 seconds

Query Optimization Scheme using Query Classification in Hybrid Spatial DBMS (하이브리드 공간 DBMS에서 질의 분류를 이용한 최적화 기법)

  • Chung, Weon-Il;Jang, Seok-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.290-299
    • /
    • 2008
  • We propose the query optimization technique using query classification in hybrid spatial DBMS. In our approach, user queries should to be classified into three types: memory query, disk query, and hybrid query. Specialty, In the hybrid query processing, the query predicate is divided by comparison between materialized view creating conditions and user query conditions. Then, the deductions of the classified queries' cost formula are used for the query optimization. The optimization is mainly done by the selection algorithm of the smallest cost data access path. Our approach improves the performance of hybrid spatial DBMS than traditional disk-based DBMS by $20%{\sim}50%$.

Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating (유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.19-28
    • /
    • 2006
  • Most conventional model updating methods must use mathematical objective function with experimental modal matrices and analytical system matrices or must use information about the gradient or higher derivatives of modal properties with respect to each updating parameter. Therefore, most conventional methods are not appropriate for complex structural system such as bridge structures due to stability problem in inverse analysis with ill-conditions. Sometimes, moreover, the updated model may have no physical meaning. In this paper, a new FE model updating method based on a hybrid optimization technique using genetic algorithm (GA) and Holder-Mead simplex method (NMS) is proposed. The performance of hybrid optimization technique on the nonlinear problem is demonstrated by the Goldstein-Price function with three local minima and one global minimum. The influence of the objective function is evaluated by the case study of a simulated 10-dof spring-mass model. Through simulated case studies, finally, the objective function is proposed to update mass as well as stiffness at the same time. And so, the proposed hybrid optimization technique is proved to be an efficient method for FE model updating.

Hybrid Optimization Algorithm based on the Interface of a Sequential Linear Approximation Method and a Genetic Algorithm (순차적 선형화 기법과 유전자 알고리즘을 접속한 하이브리드형 최적화 알고리즘)

  • Lee, Kyung-Ho;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.93-101
    • /
    • 1997
  • Generally the traditional optimization methods have possibilities not only to give a different optimum value according to their starting point, but also to get to local optima. On the other hand, Genetic Algorithm (GA) has an ability of robust global search. In this paper, a new optimization method - the combination of traditional optimization method and genetic algorithm - is presented so as to overcome the above disadvantage of traditional methods. In order to increase the efficiency of the hybrid optimization method, a knowledge-based reasoning is adopted in the part of mathematical modeling, algorithm selection, and process control. The validation of the developed knowledge-based hybrid optimization method was examined and verified applying the method to nonlinear mathematical models.

  • PDF

A Global Optimization Method of Radial Basis Function Networks for Function Approximation (함수 근사화를 위한 방사 기저함수 네트워크의 전역 최적화 기법)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.377-382
    • /
    • 2007
  • This paper proposes a training algorithm for global optimization of the parameters of radial basis function networks. Since conventional training algorithms usually perform only local optimization, the performance of the network is limited and the final network significantly depends on the initial network parameters. The proposed hybrid simulated annealing algorithm performs global optimization of the network parameters by combining global search capability of simulated annealing and local optimization capability of gradient-based algorithms. Via experiments for function approximation problems, we demonstrate that the proposed algorithm can find networks showing better training and test performance and reduce effects of the initial network parameters on the final results.

Optimazation of Power System Stabilizer Based on Hybrid System Modeling (하이브리드시스템 모델링 기반 전력시스템안정기 최적화)

  • Baek, Seung-Mook;Park, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.46-47
    • /
    • 2007
  • 전력시스템안정기는 전력시스템의 저주파 댐핑을 효율적으로 향상시키기 위해 사용되는 제어기이다. 전력시스템안정기의 동적 특성은 위상 보상기의 이득과 시정수와 같은 선형 파라미터와 출력 리미터와 같이 비평활, 비선형 특성을 나타내는 비선형 파라미터에 영향을 받는다. 기존의 선형 제어 방법인 고유치 분석을 통한 선형 파라미터의 최적화 방법은 소신호 동작 범위에 대한 최적화 기법이기 때문에 큰 상정사고 시 효과적인 댐핑 향상을 보장할 수 없게 된다. 이를 극복하기 위하여 하이브리드 시스템에 신경회로망을 임베디드화하여 체계적인 방법으로 비선형 파라미터를 최적화한 후, 고유치 분석을 통해 선형 파라미터를 최적화함으로 전력시스템안정기의 성능 향상을 도모할 수 있다.

  • PDF

An Efficient Global Optimization Method for Reducing the Wave Drag in Transonic Regime (천음속 영역의 조파항력 감소를 위한 효율적인 전역적 최적화 기법 연구)

  • Jung, Sung-Ki;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.248-254
    • /
    • 2009
  • The use of evolutionary algorithm is limited in the field of aerodynamics, mainly because the population-based search algorithm requires excessive CPU time. In this paper a coupling method with adaptive range genetic algorithm for floating point and back-propagation neural network is proposed to efficiently obtain a converged solution. As a result, it is shown that a reduction of 14% and 33% respectively in wave drag and its consumed time can be achieved by the new method.

A Study on the Lightweight Design of Hybrid Modular Carbody Structures Made of Sandwich Composites and Aluminum Extrusions Using Optimum Analysis Method (최적화 해석기법을 이용한 샌드위치 복합재와 알루미늄 압출재 하이브리드 모듈화 차체구조물의 경량 설계 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Han, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1335-1343
    • /
    • 2012
  • In this study, the lightweight modular design of hybrid railway carbody structures made of sandwich composites and aluminum extrusions was investigated by using topology and size optimization techniques. The topology optimum design was used to select the best material for parts of the carbody structure at the initial design stage, and then, the size optimum design was used to find the optimal design parameters of hybrid carbody structures using first-order and sub-problem methods. Through the topology optimization analysis, it was found that aluminum extrusions were suitable for primary members such as the underframe and lower side panel module to improve the stiffness and manufacturability of the carbody structures, and sandwich composites were appropriate for secondary members such as the roof and middle side panel module to minimize its weight. Furthermore, the results obtained by size optimization analysis showed that the weight of hybrid carbody structures composed of aluminum extrusions and sandwich composites could be reduced by a maximum of approximately 17.7% in comparison with carbody structures made of only sandwich composites.

A Study on Lightweight Design of Double Deck High-Speed Train Hybrid Carbody Using Material Substitution and Size Optimization Method (소재대체법과 치수최적화 기법을 이용한 2층 고속열차 하이브리드 차체 구조물의 경량 설계 연구)

  • Im, Jae-Moon;Jung, Min-Ho;Kim, Jong-Yeon;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • The purpose of this paper is to suggest a lightweight design for the aluminum extrusion carbody structure of a double deck high-speed train using material substitution and size optimization method. In order to conduct material substitution, the topology optimization was used to determine the application parts of sandwich composites at the carbody structures. The results of analysis showed that sandwich composites could be applied at roof and 2nd underframe. The size optimization was used to determine thickness of the aluminum extruded and carbon/epoxy composite. The design variable, state constraint and objective function were formulated to solve the size optimization, and then, the feasible design was presented by these conditions. The results of the lightweight design showed that the weight of double deck high-speed train hybrid carbody could be reduced by 2.18(17.70%) tons.

Error Estimation about Selectivity of Approximate Range Queries in Multi-Dimensional Histogram (다차원 히스토그램에서 범위 질의의 선택도에 대한 오차 추정)

  • 정지훈;홍석진;배진욱;안성준;송병호;이석호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.211-213
    • /
    • 2001
  • 히스토그램은 질의 최적화글 위해 사용되는 튿-계 정또 중 하나이다. 최근에는 방대한 데이타에 대한 범위 질의의 선택도 추정 방법의 하나로 사용되기도 한다. 히스토그램을 통한 범위 질의의 선택도 추정 결과는 항상 오차를 포함한다. 따라서 결과의 신뢰성을 보장하기 위해 선택도에 대한 오차를 추정하는 방법이 요구된다. 추정된 선택도의 오차 추정에 대한 기존 방법은 1차원 히스토그램만을 고려하여 하나의 애트리뷰트의 값에 따라 빈도의 분포를 반영하므로 애트리뷰트가 많은 다차원 히스토그램에 바로 적용시키는데 문제가 있다. 이 논문에서는 기존의 추정된 선택도에 대한 오차 추정 기법들을 다차원에 적용할 수 있게 확장한 M-Max, M-Sum 기법을 제안하고, 두 기법을 합친 하이브리드 기법을 제안한다. 실험을 통해 M-Sum 기법과 하이브리드 기법이 M-Max 기법보다 정확한 오차 추정 기법임을 보이고, 또한 작은 기억 공간에서도 두 기법이 오차를 보다 정확하게 추정함을 보인다.

  • PDF

Memory Management based Hybrid Transactional Memory Scheme for Efficiently Processing Transactions in Multi-core Environment (멀티코어 환경에서 효율적인 트랜잭션 처리를 위한 메모리 관리 기반 하이브리드 트랜잭셔널 메모리 기법)

  • Jang, Yeon-Woo;Kang, Moon-Hwan;Chang, Jae-Woo
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.795-798
    • /
    • 2017
  • 최근 멀티코어 프로세서가 개발됨에 따라 병렬 프로그래밍은 멀티코어를 효과적으로 활용하기 위한 기법으로 그 중요성이 높아지고 있다. 트랜잭셔널 메모리는 처리 방식에 따라 HTM, STM, HyTM으로 구분되며, 최근 HTM 및 STM 결합한 HyTM 이 활발히 연구되고 있다. 그러나 기존의 HyTM 는 HTM과 STM의 동시성 제어를 위해 블룸필터를 사용하는 반면, 블룸필터의 자체적인 긍정 오류를 해결하지 못한다. 아울러, 트랜잭션 처리를 위한 메모리 할당/해제를 기존의 락 메커니즘을 사용하여 관리한다. 따라서 멀티코어 환경에서 스레드 수가 증가할수록 트랜잭션 처리 효율이 떨어진다. 본 논문에서는 멀티코어 환경에서 효율적인 트랜잭션 처리를 위한 메모리 관리 기반 하이브리드 트랜잭셔널 메모리 기법을 제안한다. 제안하는 기법은 트랜잭션 처리에 최적화된 블룸필터를 제공함으로써, 병렬적으로 동시에 수행되는 서로 다른 환경의 트랜잭션에 대해 일관성 있는 처리를 지원한다. 아울러, CPU 캐시라인에 최적화된 메모리 기법을 통해, 메모리 할당량이 적은 트랜잭션은 로컬 캐시에 할당함으로써 트랜잭션의 빠른 처리를 지원한다.