Recommender systems use data from customers to suggest personalized products. The recommender systems can be categorized into three cases; collaborative filtering, contents-based filtering, and hybrid recommender system that combines the first two filtering methods. In this work, we introduce and compare deep learning-based recommender system using autoencoder. Autoencoder is an unsupervised deep learning that can effective solve the problem of sparsity in the data matrix. Five versions of autoencoder-based deep learning models are compared via three real data sets. The first three methods are collaborative filtering and the others are hybrid methods. The data sets are composed of customers' ratings having integer values from one to five. The three data sets are sparse data matrix with many zeroes due to non-responses.
Recently, provides information which is most necessary to the user the research against the web information recommendation system for the Internet shopping mall is actively being advanced. the back which it will drive in the object. In that Dynamic Web Recommendation Method Using SOM (Self-Organizing Feature Maps) has the advantages of speedy execution and simplicity but has the weak points such as the lack of explanation on models and fired weight values for each node of the output layer on the established model. The method proposed in this study solves the lack of explanation using the Bayesian reasoning method. It does not give fixed weight values for each node of the output layer. Instead, the distribution includes weight using Hybrid SOM. This study designs and implements Dynamic Web Recommendation Method Using Hybrid SOM. The result of the existing Web Information recommendation methods has proved that this study's method is an excellent solution.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.149-149
/
2020
하천에서 물 흐름이 보와 댐과 같은 수공구조물을 지날 때 일반적으로 흐름상태에 다양하고 급진적인 변화가 발생한다. 특히 흐름이 구조물을 지나면서 사류(supercritical flow)로 변하고 다시 상류(subcritical flow)로 복원되면서 일어나는 도수(hydraulic jump) 현상은 수위의 급변화, 흐름 에너지 소산, 변동성이 강한 압력 분포 등이 특징이다. 이러한 흐름 특성들은 보나 여수로와 같은 수공구조물 자체의 성능뿐만 아니라 이들 수공구조물의 하류에서 발생하는 국부세굴로 인해 구조물의 안정성에 부정적인 영향을 줄 수 있다. 따라서 수공구조물을 설계할 때는 이들 구조물을 통과하는 흐름의 비정상 난류 흐름 특성을 정확하게 해석하여 반영하여야 한다. 이 연구에서는 k-omega SST 난류 모형과 자유수면의 급격한 변동을 해석하기 위한 하이브리드-VOF(hybrid volume of fluid)기법을 이용하여 도수현상을 수치적으로 재현하고자 한다. 기존 CFD(computational fluid Dynamics) 모델링에서는 자유수면 변동의 영향을 고려하기 위해 VOF 기법을 많이 사용하였다. 하지면 전통적인 VOF 기법은 다상흐름(multiphase flow)을 오직 부피분율(volume fraction)의 함수로만 고려하며 모의함으로써 강한 수면변동뿐만 아니라 공기연행(air entrainment)를 동반하는 난류 흐름을 모의하는데는 한계가 있다. 이 연구에서 이용하는 Eulerian 기법인 하이브리드 VOF 기법은 물과 공기의 각 상에 대하여 흐름 특성들을 개별적으로 계산하기 때문에 공기연행을 포함한 급변류 흐름에서 전통적인 VOF 기법보다 적용성이 우수하다. 이와 같은 난류모형과 자유수면 포착기법을 이용하여 3차원 비정상 난류 흐름 수치모형을 구축하여 수공구조물 주변에서 발생하는 강한 공기연행과 난류 특성를 보이는 급변류를 수치적으로 재현한다. 이 연구는 계산된 수치해석 결과를 기존 수리실험 결과와 비교하여 수치모형의 적용성을 평가하고 도수 현상에서 발생하는 독특한 흐름 특성을 제시한다.
The purpose of this study is to identify and clarify the concept of high-risk pregnant nursing. This study used Schwartz-Barcott & Kim's hybrid model to identify the main attributes and indicators. In the fieldwork stage, data were collected in Seoul. The participants were 10 nurses working in the who performed direct nursing care for high risk pregnant women in the high risk ward for more than 5 years. The concept of high-risk pregnant nursing was found to have 5 attributes and 37 indicators in 3 dimensions. The concept analysis high-risk pregnant nursing in this study could provide guidelines for high-risk pregnant nursing and lay a theoretical foundation.support' nursing practice and be useful for research in the women's health field..
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.94-94
/
2023
유역에서의 홍수를 예측하기 위한 다양한 강우-유출 모형들이 개발되어 사용되고 있다. 개념적 강우-유출 모형들은 신뢰성과 적용성이 높아 실무에서 널리 활용되어왔으나, 강우-유출 과정을 단순화하여 고려하므로 유출예측의 정확도에 한계가 있다. 또한 모형의 매개변수에 여러 불확실성이 존재하므로 충분한 양의 관측자료를 사용한 보정 작업이 필요하다. 물리적 강우-유출 모형들은 유출예측 결과가 비교적 물리적으로 정확하다는 장점이 있지만, 높은 계산 비용 및 수치적 불안정성으로 인하여 실무에의 적용이 힘들다. 본 연구에서는 홍수 예측의 정확도와 효율성을 모두 확보할 수 있는 하이브리드 기법을 개발하였다. 본 연구에서 개발한 기법은 물리적 모형인 동역학파 모형과 개념적 모형인 순간단위도 모형, 그리고 딥러닝 모형을 결합하여 사용하는 기법이다. 유역의 조도계수 및 지형을 활용한 동역학파 시뮬레이션을 수행하였으며, 동역학파 시뮬레이션 결과 및 멱함수로 나타내어지는 비선형적 강우-유출 관계를 이용하여 유역의 순간단위도를 유도였다. 또한, 딥러닝 모형인 LSTM 모형을 활용하여 강우손실 매개변수를 추정하였으며, 이를 이용하여 강우손실을 계산한 후 유효강우주상도를 산정하였다. 그리고 유역 출구에서의 홍수수문곡선은 유효강우주상도와 순간단위도를 활용한 회선적분을 통해 예측되었다. 본 연구에서 개발한 기법을 시험유역 및 자연유역에서의 홍수 예측에 적용해보았으며, 예측 결과는 NSE=0.55-0.90, R2=0.67-0.95의 높은 정확도를 보였다. 본 연구에서 유도하는 순간단위도는 한 유역에서 유일하지 않으며, 유효 강우강도의 함수이므로 홍수 예측에 비선형적 강우-유출 관계를 고려할 수 있으며, 수많은 유효 강우강도에 대한 순간단위도들은 멱함수를 이용하여 순간적으로 유도될 수 있다. 또한, 유역의 강우 특성이나 지표면의 토양수분, 식생과 같은 특성을 딥러닝 모형을 통해 고려함으로써 강우 손실 산정의 불확실성을 줄일 수 있다. 또한, 순간단위도 유도를 위한 기초작업인 동역학파 시뮬레이션은 유역의 지형과 조도계수만을 필요로 하므로 미계측 유역에의 적용이 유리하다.
The purpose of this study was to open two classes with the name of $21^{st}$ Leadership, run with two different hybrid teaching styles which are hybrid LZ type and hybrid lz type, and compare them with each other in order to analyze their effectiveness of hybrid model of the subject. The subjects of this study were 64 students who took these classes, and statistical analysis were analyzed through SPSS 21.0 program. As a result of the analysis, first, there were significant development in terms of the knowledge of leadership in both LZ and lz model. but the result of final exam in the group lz was shown only significant development. Second, in the case of unconditional self-acceptance there was significant development only in the group lz. Third, the development of leadership skills was shown only in the group lz. Implications of these results were concluded that the lz is more suitable for the subject of $21^{st}$ Leadership because this model can provide much more opportunities to develope interpersonal relationship skill than LZ model. In addition, suggestions for future research were discussed.
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.6A
/
pp.425-433
/
2011
In this study, in order to investigate the wave-induced buoyancy effects, experimental studies were conducted on pontoon-type floating structures. A series of small-scale tests with various wave cases were performed on the pontoon models. A total of four small-scale pontoon models with different lateral shapes and bottom details were fabricated and tested under the five different wave cases. Six hydraulic pressure gauges were attached to the bottom surfaces of the pontoon models and the wave-induced hydraulic pressure was measured during the tests. Finally, hydraulic pressures subjected to the bottoms of the pontoon models were compared with each other. As the results of this study, it was found that whereas the waffled bottom shape hardly influenced the wave-induced hydraulic pressure, the hybrid lateral shape significantly influenced the wave-induced hydraulic pressure subjected on the bottoms of floating structures. The air gap effects of the hybrid shape contribute to decreasing the wave-induced hydraulic pressure due to absorption of wave impact energy. Compared with box type, the hydraulic pressures of the hybrid type were about 83% at the bow, 74% at the middle, and 53% at the stern.
Proceedings of the Korean Information Science Society Conference
/
2007.06c
/
pp.104-109
/
2007
최근 분산된 자원을 효과적으로 공유할 수 있는 그리드 기반의 과학 연구가 다양하게 진행되고 있으며, 그러한 예로 국내에서는 건설 및 토목 분야의 원격실험 관측과 제어를 포함한 공동연구 환경의 구축을 내용으로 하는 KOCED(Korea Construction Engineering Development) 프로젝트가 진행 중에 있다. 본 논문에서는 KOCED에서 구축 중인 실험센터의 하나로써, 지리적으로 떨어진 실험 시설과 수치시뮬레이션을 연동하여 실험할 수 있는 하이브리드 실험센터를 대상으로 데이터 모델링을 하였다. 데이터 모델은 데이터를 표현하는 용어를 통일하고 데이터 간의 관계를 명확하게 하여, 데이터의 재사용성을 높일 수 있기 때문에 실험비용이 많이 소모되는 과학실험에 필수적이다. 그리드에 기반한 하이브리드 실험의 데이터 모델링은, 기존의 건설 및 토목실험의 대부분이 독립적인 실험 형태였기 때문에, 정확한 데이터 모델을 예측하기가 용이하지 않았다. 따라서 먼저 하이브리드 실험의 축소 모형인, 프로토타입 실험체를 만들고, 이에 대한 데이터 모델을 설계하여 토목공학 연구자에 의해 사용하게 하였다. 일정기간 사용기간을 갖고, 이에 대한 회의를 통해 향후 구축될 하이브리드 실험센터의 데이터 모델을 설계하였다. 현재 하이브리드 실험의 데이터 모델을 그리드 포탈 기반의 데이터관리 서비스로 구현 중에 있다.
Park, Il-Su;Han, Jun-Tae;Sohn, Hae-Sook;Kang, Suk-Bok
Journal of the Korean Data and Information Science Society
/
v.22
no.3
/
pp.467-476
/
2011
We developed the hybrid model coupled with predictive model and business rule model for administration of injury by utilizing medical data of the National Health Insurance in Korea. We performed decision tree analysis using data mining methodology and used SAS Enterprise Miner 4.1. We also investigated under several business rule for benefits (expense paid by insurer) and claims of injury in National Health Insurance Corporation. We can see that the proposed hybrid model provides a quite efficient plausible results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.