• Title/Summary/Keyword: 하이드레이트

Search Result 353, Processing Time 0.029 seconds

Development of a Numerical Simulator for Methane-hydrate Production (메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.67-75
    • /
    • 2014
  • Methane gas hydrate which is considered energy source for the next generation has an urgent need to develop reliable numerical simulator for coupled THM phenomena in the porous media, to minimize problems arising during the production and optimize production procedures. International collaborations to improve previous numerical codes are in progress, but they still have mismatch in the predicted value and unstable convergence. In this paper, FEM code for fully coupled THM phenomena is developed to analyze methane hydrate dissociation in the porous media. Coupled partial differential equations are derived from four mass balance equations (methane hydrate, soil, water, and hydrate gas), energy balance equation, and force equilibrium equation. Five main variables (displacement, gas saturation, fluid pressure, temperature, and hydrate saturation) are chosen to give higher numerical convergence through trial combinations of variables, and they can analyze the whole region of a phase change in hydrate bearing porous media. The kinetic model is used to predict dissociation of methane hydrate. Developed THM FEM code is applied to the comparative study on a Masuda's laboratory experiment for the hydrate production, and verified for the stability and convergence.

An Experimental Study on Investigation of the Main Factors to Improve the Formation Performance of Gas Hydrate (가스하이드레이트 생성성능 향상을 위한 주요인자별 특성 규명에 관한 실험적 연구)

  • Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • Gas hydrate is an ice-like crystalline compound that forms at low temperature and high pressure conditions. It consists of gas molecules surrounded by cages of water molecules. Although hydrate formation was initially found to pose serious flow-assurance problems in the gas pipelines or facilities, gas hydrates have much potential for application in a wide variety of areas, such as natural gas storage and transportation. Its very high gas-to-solid ratio and remarkably stable characteristics makes it an attractive candidate for such use. However, it needs to be researched further since it has a slow and complex formation process and a high production cost. In this study, formation experiments have been carried out to investigate the effects of pressure, temperature, water-to-storage volume ratio, SDS concentration, heat transfer and stirring. The results are presented to clarify the relationship between the formation process and each factor, which consequently will help find the most efficient production method.

  • PDF

A Case Study of Test Production of Gas from Hydrate Bearing Sediments on Nankai Trough in Japan (일본 난카이 해구 가스하이드레이트 퇴적층으로부터의 가스 시험생산 사례분석)

  • Kim, A-Ram;Lee, Jong-Won;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Gas hydrate is a solid substance composed of natural gas constrained in water molecules under low temperature and high pressure conditions. The existence of hydrates has been reported to be world-widely distributed, mainly at permafrost and deep ocean floor. Test productions of small amount of natural gas from the on-shore permafrost have been accomplished in U.S.A and Canada, but, world-first and the only production case from off-shore hydrate bearing sediments was in Nankai trough, Japan. In this study, we introduce key technologies in gas production from hydrates by analyzing the Japanese off-shore gas production project in Nankai trough in terms of depressurization- induced dissociation so as to utilize planned domestic gas production test in Ulleung basin.

Study on Characteristic of Self-preservation Effect of CO2 Hydrate according to Temperature, Particle Diameter and Shape (온도, 직경, 형태에 따른 CO2 하이드레이트의 자기보존효과 특성 연구)

  • Kim, Yeon-Soo;Kang, Seong-Pil;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.602-608
    • /
    • 2013
  • Gas hydrate studies are attracting attention of many researchers as an innovative, economic and environmentally friendly technology when it is applied to $CO_2$ capture, transport, and storage. In this study, we investigated whether $CO_2$ hydrate shows the self-preservation effect or not, that is the key property for developing a novel $CO_2$ transport/storage method. Especially the degree of self-preservation effect for $CO_2$ hydrate was studied according to the particle size of $CO_2$ hydrate samples. We prepared three kinds of $CO_2$ hydrate samples varying their particle diameter as millimeter, micron and nano size and measured their change of weight at $-15{\sim}-30^{\circ}C$ under atmospheric pressure during 3 weeks. According to our experimental result, the lower temperature, larger particle size, and compact structure for higher density are the better conditions for obtaining self-preservation effect.

A Study on Gas Hydrate Replacement Method for Organic Methane Recovery in Ocean Sediment (해저 퇴적토 내 유기성 메탄 회수를 위한 가스하이드레이트 치환기법 연구)

  • Shin, Dong Hyung;Park, Dae Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.5-10
    • /
    • 2018
  • In this study, the effect of physico-chemical factors (e.g., pressure, electrolyte, and organic matter) in the gas hydrate deposit on CH4-CO2 replacement process was investigated experimentally. The higher initial pressure during gas injection led the higher reaction rate at the first time, but finally it did not. Electrolytes and organic matter have some effects on reforming process after dissociation of gas hydrate. It is expected that further research using real marine sediments with actual gas hydrate will enable the development of technologies applicable to the characteristics of domestic seabed geology. Ultimately, it is expected that it will be possible to recover and utilize methane as an organic resource through application of domestic gas hydrate deposit in the Ulleung Basin, East Sea.

Calculation of Gas Hydrate Saturation Within Unconsolidated Sediments (미고결 퇴적층내 가스하이드레이트 포화도 계산)

  • Kim, Gil-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.102-115
    • /
    • 2012
  • The purpose of this paper is to review several different methods calculating gas hydrate saturations. There are three methods using downhole log data, core data (including pressure core), and seismic velocity data. Archie's equation using electrical resistivity of downhole log data is widely used for saturation calculation. In this case, Archie's parameters should be defined accurately. And the occurrence types of gas hydrate significantly affect to saturation calculation. Thus saturation calculation should be carefully conducted. The methods using chlorinity and pressure core data are directly calculated from core sample. So far, the saturation calculated from pressure core gives accurate and quantitative values. But this method is needed much more time and cost. Thus acquisition of the continuous data with sediment depth is realistically hard. The recent several results show that the saturation calculated from resistivity data is the highest values, while the value calculated from pressure core is the lowest. But this trend is not always absolutely. Thus, to estimate accurate gas hydrate saturation, the values calculated from several methods should be compared.

Computation of Apparent Resistivity from Marine Controlled-source Electromagnetic Data for Identifying the Geometric Distribution of Gas Hydrate (가스 하이드레이트 부존양상 도출을 위한 해양 전자탐사 자료의 겉보기 비저항 계산)

  • Noh, Kyu-Bo;Kang, Seo-Gi;Seol, Soon-Jee;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2012
  • The sea layer in marine Controlled-Source Electromagnetic (mCSEM) survey changes the conventional definition of apparent resistivity which is used in the land CSEM survey. Thus, the development of a new algorithm, which computes apparent resistivity for mCSEM survey, can be an initiative of mCSEM data interpretation. First, we compared and analyzed electromagnetic responses of the 1D stratified gas hydrate model and the half-space model below the sea layer. Amplitude and phase components showed proper results for computing apparent resistivity than real and imaginary components. Next, the amplitude component is more sensitive to the subsurface resistivity than the phase component in far offset range and vice versa. We suggested the induction number as a selection criteria of amplitude or phase component to calculate apparent resistivity. Based on our study, we have developed a numerical algorithm, which computes appropriate apparent resistivity corresponding to measured mCSEM data using grid search method. In addition, we verified the validity of the developed algorithm by applying it to the stratified gas hydrate models with various model parameters. Finally, by constructing apparent resistivity pseudo-section from the mCSEM responses with 2D numerical models simulating gas hydrate deposits in the Ulleung Basin, we confirmed that the apparent resistivity can provide the information on the geometric distribution of the gas hydrate deposit.

Phase Equilibria and $^{13}C$ NMR Analysis of the Double Semi-Clathrates Containing TBAB (TBAB를 포함하는 혼합 하이드레이트의 상평형 및 $^{13}C$ NMR 분석)

  • Lee, Seung-Min;Park, Sung-Min;Lee, Young-Jun;Lee, Sung-Won;Seo, Yong-Won
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.367-371
    • /
    • 2011
  • TBAB (tetra-n-butyl ammonium bromide) forms a semi-clathrate with water under atmospheric pressure conditions and recently has attracted great attention due to its usage as a thermodynamic promoter in gas storage and separation process using gas hydrate formation. In this study, we measured the three-phase (hydrate (H) - liquid water ($L_{w}$)-vapor (V)) equilibria of the ternary $CH_{4}$+TBAB+water and $CO_{2}$+TBAB+water mixtures at the TBAB concentrations of 5 and 32 wt% to investigate promoting characteristics of TBAB. The greater promotion effect of TBAB was observed at 32 wt% than at 5 wt%. This result was in good agreement with that from pure TBAB semi-clathrate phase diagram under atmospheric pressure conditions. Through $^{13}C$ NMR analysis of the $CH_{4}$+TBAB semi-clathrate, it was found that $CH_{4}$ molecules are enclathrated in the cages of the double semi-clathrate and the position of resonance peak from encaged $CH_{4}$ molocules in the double semi-clathrate is the same as that from encaged $CH_{4}$ molocules in the pure $CH_{4}$ hydrate of structure I.

Removal Characteristics of Chloral Hydrate by Activated Carbons and Biofiltration (활성탄과 생물여과 공정에서의 Chloral hydrate 제거 특성)

  • Bae, Sang-Dae;Son, Hee-Jong;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.218-224
    • /
    • 2008
  • Coal-, coconut- and wood-based activated carbons and anthracite were tested to evaluate adsorption and biodegradation performances of chloral hydrate. In the early stage of the operation, the adsorption was the main mechanism for the removal of chloral hydrate, however as increasing populations of attached bacteria, the bacteria played a major role in removing chloral hydrate in the activated carbon and anthracite biofilter. It was also investigated that chloral hydrate was readily subjected to biodegrade. The coal- and coconut-based activated carbons were found to be most effective adsorbents in adsorption of chloral hydrate. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria was inhibited in the removal of chloral hydrate at temperatures below 10$^{\circ}C$. It was more active at higher water temperatures(20$^{\circ}C$ <) but less active at lower water temperature(10$^{\circ}C$>). The removal efficiencies of chloral hydrate obtained by using four different adsorbents were directly related to the water temperatures. Water temperature was the most important factor for removal of chloral hydrate in the anthracite biofilter because the removal of chloral hydrate depended mainly on biodegradation. Therefore, the main removal mechanism of chloral hydrate by applying activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that the application of coalbased activated carbon to the water treatment should be the best for the removal of chloral hydrate.

The Characteristic and Origin of Organic Matter in the ODP Leg 204 Site 1249C and Site 1251B (ODP Leg 204 Site 1249C와 Site 1251B 퇴적물의 유기물 기원 및 지화학적 특성)

  • Shim, Eun-Hyoung;Yun, Hye-Su;Lee, Young-Joo;Han, Sang-Young
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.71-85
    • /
    • 2014
  • To study biogeochemical characteristics and origin organic matter, sediment samples were taken from Site of 1249C and Stie 1251B of ODP Leg 204. Data of Rock-Eval, isotope, and element analysis generally indicate dominance of marine organic matter in sediments deposited under marine sedimentary environment. Only Rock-Eval data are somewhat different from those of others owing to under-maturation of organic matter. Samples of Site 1249C show high content of gas hydrate, whereas Site 1251B low content of gas hydrate in some intervals of the core. This result may be accounted to different location of two cores and presence of transportation passage (Horizon A, BSR 2) of thermogenic gas in the core, 1249 C. However, Site 1251B Located in the basin of low accumulation of gas hydrate is presumed to be limited in the gas hydrate production. Because not only transportation passage is limited to move thermogenic gas from the core, but also gas supply was not enough. Therefore, the biogenic gas that resulted from diagenesis of there sediment is superior.