• Title/Summary/Keyword: 하수처리장 모델

Search Result 58, Processing Time 0.035 seconds

Numerical Simulation of PFOA in Tokyo Bay using EMT-3D (EMT-3D 모델을 이용한 동경만의 PFOA 시뮬레이션)

  • Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2007
  • A three-dimensional ecological model (EMT-3D) was applied to Tokyo Bay for the simulation of PFOA. EMT-3D was calibrated with seawater analysis data obtained from the study area in 2004. The simulated results of dissolved PFOA were in good agreement with the observed values, with a correlation coefficient(R) of 0.7115${\sim}$0.8759 and a coefficient of determination $(R^2)$ of 0.5062${\sim}$0.7672. The results of sensitivity analysis showed that partition rate, adsorption rate and settling rate were important factors for PFOA in particulate organic matter. In the case of PFOA in phytoplankton, bioconcentration factor, uptake rate and partition rate were important factors. Therefore, the parameters must be carefully considered in the modeling. In the case of 50% and 80% total loads reduction, concentration of dissolved PFOA was shown to be lower than 20ng/L and 10ng/L, respectively. In the case of reduction of loads from rivers in each prefecture, Tokyo prefecture was found to have the most influence on the change of dissolved PFOA in surface water while Chiba prefecture was found to have the most influnce on the change of dissolved PFOA in bottom water.

  • PDF

Material Budgets in the Nakdong River Estuary with Simple Box Model (낙동강 하구해역에서의 단순 박스모델에 의한 물질수지)

  • Hong Suk-Jin;Lee Dae-In;Kim Dong-Myung;Park Chung-Kil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.3
    • /
    • pp.50-57
    • /
    • 2000
  • Budgets of fresh water, salt, DIN and DIP in the Nakdong river estuary were estimated in order to clarify the characteristics of material cycling and fluxes of nutrients with a simple box model. Freshwater inflow into this system was approximately 1.1E+10m³/y, water exchange was 3.3E+10m³/y and water residence time was 2.03 day assumed with salinity between estuary and adjacent ocean. Nutrients loadings were 3.2E+09mol DIN/y3.7×10³, 2.7E+07mo1 DIP/y, respectively. net ecosystem metabolism was 2.4E+07mo1 C/y. Although the Nakdong river discharge was the main source of nutrients but Jang-rim sewage treatment plant effluent take parts of 16% of nitrogen and 10.2% of phosphorus loadings.

  • PDF

Performance Evaluation of Multilinear Regression Empirical Formula and Machine Learning Model for Prediction of Two-dimensional Transverse Dispersion Coefficient (다중선형회귀경험식과 머신러닝모델의 2차원 횡 분산계수 예측성능 평가)

  • Lee, Sun Mi;Park, Inhwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.172-172
    • /
    • 2022
  • 분산계수는 하천에서 오염물질의 혼합능을 파악할 수 있는 대표적인 인자이다. 특히 하수처리장 방류수 혼합예측과 같이 횡 방향 혼합에 대한 예측이 중요한 경우, 하천의 지형적, 수리학적 특성을 고려한 2차원 횡 분산계수의 결정이 필요하다. 2차원 횡 분산계수의 결정을 위해 기존 연구에서는 추적자실험결과로부터 경험식을 만들어 횡 분산계수 산정에 사용해왔다. 회귀분석을 통한 경험식 산정을 위해서는 충분한 데이터가 필요하지만, 2차원 추적자 실험 건수가 충분치 않아 신뢰성 높은 경험식 산정이 어려운 상황이다. 따라서 본 연구에서는 SMOTE기법을 이용하여 횡분산계수 실험데이터를 증폭시켜 이로부터 횡 분산계수 경험식을 산정하고자 한다. 또한 다중선형회귀분석을 통해 도출된 경험식의 한계를 보완하기 위해 다양한 머신러닝 기법을 적용하고, 횡 분산계수 산정에 적합한 머신러닝 기법을 제안하고자 한다. 기존 추적자실험 데이터로부터 하폭 대 수심비, 유속 대 마찰유속비, 횡 분산계수 데이터 셋을 수집하였으며, SMOTE 알고리즘의 적용을 통해 회귀분석과 머신러닝 기법 적용에 필요한 데이터그룹을 생성했다. 새롭게 생성된 데이터 셋을 포함하여 다중선형회귀분석을 통해 횡 분산계수 경험식을 결정하였으며, 새로 제안한 경험식과 기존 경험식에 대한 정확도를 비교했다. 또한 다중선형회귀분석을 통해 결정된 경험식은 횡 분산계수 예측범위에 한계를 보였기 때문에 머신러닝기법을 적용하여 다중선형회귀분석에 대한 예측성능을 평가했다. 이를 위해 머신러닝 기법으로서 서포트 벡터 머신 회귀(SVR), K근접이웃 회귀(KNN-R), 랜덤 포레스트 회귀(RFR)를 활용했다. 세 가지 머신러닝 기법을 통해 도출된 횡 분산계수와 경험식으로부터 결정된 횡 분산계수를 비교하여 예측 성능을 비교했다. 이를 통해 제한된 실험데이터 셋으로부터 2차원 횡 분산계수 산정을 위한 데이터 전처리 기법 및 횡 분산계수 산정에 적합한 머신러닝 절차와 최적 학습기법을 도출했다.

  • PDF

Development of an UV Distribution Model for the Design of a Submerged UV Disinfection Reactor and Its Application (침지형 자외선 살균조 설계를 위한 자외선 분포 모델의 개발 및 적용)

  • Park, Changyeun;Kim, Sunghong;Choi, Younggyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.505-512
    • /
    • 2021
  • A 3D model was developed to calculate the UV intensity of a submerged-type UV disinfection reactor. Numerical experiments were conducted by inputting the design factors of an open channel-type disinfection reactor and a pipe-type disinfection reactor that were installed in an actual sewage treatment plant. The following data were obtained: The average UV intensity of the installed open channel-type reactor and pipe-type reactor was 7.87 mW/cm2 and 13.09 mW/cm2, respectively; the UV dose reflecting the UV irradiation time and taking into account attenuation effects such as mixing imbalance, lamp aging, temperature, and fouling, was expected to be 21.1 mJ/cm2 and 24.8 mJ/cm2, respectively, and these values are 5 % and 24 % higher than the target UV dose of 20 mJ/cm2, respectively. By using the UV3D model, the optimal lamp position, which maximizes the average UV intensity without changing the size of the disinfection reactor or lamp output power, can be found. In this case, by only adjusting the lamp position, the average UV intensity can be increased by 0.9 % for the open channel-type and 0.5 % for the pipe-type, respectively. A better average UV intensity can be obtained by model simulation. By adjusting the horizontal and vertical ratio of the open channel-type reactor and by moving the lamp position, the average UV intensity can be increased by 7.4 % more than the present case.

A Hydrodynamic Modeling Study to Analyze the Water Plume and Mixing Pattern of the Lake Euiam (의암호 수체 흐름과 혼합 패턴에 관한 모델 연구)

  • Park, Seongwon;Lee, Hye Won;Lee, Yong Seok;Park, Seok Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.488-498
    • /
    • 2013
  • A three-dimensional hydrodynamic model was applied to the Lake Euiam. The lake has three inflows, of which Gongji Stream has the smallest flow rate and poorest water. The dam-storage volume, watershed area, lake shape and discharge type of the Chuncheon Dam and the Soyang Dam are different. Therefore, it is difficult to analyze the water plume and mixing pattern due to the difference of the two dams regarding the amount of outflow and water temperature. In this study, we analyzed the effects of different characteristics on temperature and conductivity using the model appropriate for the Lake Euiam. We selected an integrated system supporting 3-D time varying modeling (GEMSS) to represent large temporal and spatial variations in hydrodynamics and transport of the Lake Euiam. The model represents the water temperature and hydrodynamics in the lake reasonably well. We examined residence time and spreading patterns of the incoming flows in the lake based on the results of the validated model. The results of the water temperature and conductivity distribution indicated that characteristics of upstream dams greatly influence Lake Euiam. In this study, the three-dimensional time variable water quality model successfully simulated the temporal and spatial variations of the hydrodynamics in the Lake Euiam. The model may be used for efficient water quality management.

A Model Study of Dissolved Oxygen Change by Waste Water Discharge in the River (하수방류에 따른 하천의 용존산소변화 예측)

  • Sung, Dong-Gwon;Kim, Tae-Keun;Choi, Kyoung-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.2 s.94
    • /
    • pp.126-132
    • /
    • 2001
  • Urbanization and population increase result in the construction of STPs (Sewage Treatment Plants). Discharge from STPs greatly influences on the water quality in the stream which receives discharges. The decision of STP location should be considered with the discharge capacity of STP and self-purification of river in the water quality perspectively. In this study, a change of dissolved oxygen (DO) in a river being affected by STP discharge was simulated by the STELLA model. Minimum DO was 4.98 ppm in 42.6 km downstream of STP. Approximately, it takes 8days to recover the DO by the self-purification and this location is 340 km down-stream from the STP. If the model run for the consideration of the self-purification without phytoplankton algorithms, minimum DO was 4.92 ppm. It took 0.25 day longer to be the minimum DO than that with the phytoplankton functions. Without the phytoplankton algorithm, it took 11days to recover the DO. This proves the importance of phytoplankton in the self-purification processes. Additionally, the effect of adjacent STP discharge should be considered in the construction of new STP.

  • PDF

Integrated Evaluation of Advanced Activated Sludge Processes Based on Mathematical Model and Fuzzy Inference (수학적 모델 및 퍼지 추론에 의한 고도 활성슬러지 공정의 통합 평가)

  • Kang, Dong-Wan;Kim, Hyo-Su;Kim, Ye-Jin;Choi, Su-Jung;Cha, Jae-Hwan;Kim, Chan-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.97-104
    • /
    • 2010
  • At present, the biological nutrient removal (BNR) process for removal of nitrogen and phosphorus is being constructing to keep pace with the reinforced standard of effluent quality and the traditional activated sludge process of preexistence is being promoting to retrofit. At the most case of retrofitting, processes are subjected to be under consideration as alternative BNR process for retrofitting. However, process evaluation methods are restricted to compare only treatment efficiency. Therefore, when BNR process apply, process evaluation was needed various method for treatment efficiency as well as sludge production and aeration cost, and all. In this study, the evaluation method of alternative process was suggested for the case for retrofitting S wastewater treatment plant which has been operated the standard activated sludge process. Three BNR processes for evaluation of proper alternatative process were selected and evaluated with suggested method. The selected $A^2$/O, VIP and DNR processes were evaluated using the mathematical model which is time and cost effective as well as gathered objective evaluation criteria. The evaluation between 5 individual criteria was possible including sludge production and energy efficiency as well as treatment performance. The objective final decision method for selection of optimal process was established through the fuzzy inference.

Studies of Pretreatment Mehtods for Additional Reduction of Sewage Sludge (최종 하수처리장 슬러지의 추가감량을 위한 슬러지 전처리 연구)

  • Kim, Seogku;Kim, Jahyun;Lim, Junhyuk;Lee, Jeakun;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.15-21
    • /
    • 2014
  • In this study, biochemical methane potential test was conducted to estimate ultimate methane and carbon dioxide yield for anaerobic digestion and pretreatment with sewage sludge cake. Two of 0.2 % TS of sewage sludge cakes were treated with 5M NaOH or sonication of 0.51 W/mL during 30 min respectively. Another sample was treated simultaneously with NaOH and sonication in same condition. Then, initial soluble COD increased from 33.1 mg/L to 494 mg/L. After BMP test, methane production ranged from 3.12 and 84.2 mL $CH_4$ per g of Volatile Solid (VS) and 9.2 and 13.5 mL $CO_2$ per g of Volatile Solid (VS) for carbon dioxide. In other tests, injection of nutrient media or sludge supernatant produced 73.1 and 73.8 mL $CH_4$ per g of Volatile Solid (VS) and 11.2 and 13.6 mL $CO_2$ per g of Volatile Solid (VS) respectively. When BMP test finished, 62 % of initial volatile solids decreased to 33.8~45.4 %. Simultaneous pretreatment increased soluble COD, reduction rate of volatile solids and digestion efficiency than those for alkaline and ultrasonic pretreatment.

Development and Evaluation of Model-based Predictive Control Algorithm for Effluent $NH_4-N$ in $A^2/O$ Process ($A^2/O$ 공정의 유출수 $NH_4-N$에 대한 모델기반 예측 제어 알고리즘 개발 및 평가)

  • Woo, Dae-Joon;Kim, Hyo-Soo;Kim, Ye-Jin;Cha, Jae-Hwan;Choi, Soo-Jung;Kim, Min-Soo;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • In this study, model-based $NH_4-N$ predictive control algorithm by using influent pattern was developed and evaluated for effective control application in $A^2/O$ process. A pilot-scale $A^2/O$process at S wastewater treatment plant in B city was selected. The behaviors of organic, nitrogen and phosphorous in the biological reactors were described by using the modified ASM3+Bio-P model. A one-dimensional double exponential function model was selected for modeling of the secondary settlers. The effluent $NH_4-N$ concentration on the next day was predicted according to model-based simulation by using influent pattern. After the objective effluent quality and simulation result were compared, the optimal operational condition which able to meet the objective effluent quality was deduced through repetitive simulation. Next the effluent $NH_4-N$ control schedule was generated by using the optimal operational condition and this control schedule on the next day was applied in pilot-scale $A^2/O$ process. DO concentration in aerobic reactor in predictive control algorithm was selected as the manipulated variable. Without control case and with control case were compared to confirm the control applicability and the study of the applied $NH_4-N$control schedule in summer and winter was performed to confirm the seasonal effect. In this result, the effluent $NH_4-N$concentration without control case was exceeded the objective effluent quality. However the effluent $NH_4-N$ concentration with control case was not exceeded the objective effluent quality both summer and winter season. As compared in case of without predictive control algorithm, in case of application of predictive control algorithm, the RPM of air blower was increased about 9.1%, however the effluent $NH_4-N$ concentration was decreased about 45.2%. Therefore it was concluded that the developed predictive control algorithm to the effluent $NH_4-N$ in this study was properly applied in a full-scale wastewater treatment process and was more efficient in aspect to stable effluent.

Application of QUAL2E Model to Water Quality Prediction of the Nam river (남강의 수질예측을 위한 QUAL2E 모델 적용)

  • Choi, Hyoung-Sub;Park, Tae-Ju;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.7-14
    • /
    • 1995
  • This research was conducted to apply the QUAL2E model to be adopted to the Nam river under current water quality conditions. The survey area of total 60 Km was divided into five reaches. Each reach was then subdivided into the uniform computational elements of 1.5 Km. Based on the stream characteristics, nine sampling stations consisting of six at main streams and three at tributaries were selected. The field data were obtained from the selected stations twice during October of 1991 and May of 1992, which represented the cold weather and low flow, also the warm weather and low flow conditions, respectively. As the results of sensitivity analysis of the model, the important parameters were the rates of BOD decay, Org-N oxidation, $NH_3-N$ oxidation, Org-P decay. The calibrated and verified results by QUAL2E model were correlation coefficient of $0.45{\sim}0.94$. The results displayed a good agreement between the variables of the field measurements and the model simulations, indicating a potential use of the QUAL2E model for the water quality assessment in the Nam River.

  • PDF