• Title/Summary/Keyword: 하성단구

Search Result 14, Processing Time 0.023 seconds

Soil Characteristics on the Fluvial Terrace in the Basin of Ssangcheon (쌍천 하성단구의 토양 특성)

  • 강영복;박종원
    • Journal of the Korean Geographical Society
    • /
    • v.35 no.2
    • /
    • pp.159-176
    • /
    • 2000
  • 본 연구는 남한강 상류의 소지류인 쌍천 유역에 발달한 하성단구의 퇴적물을 모재로 발달한 토양 특성을 조사.분석하였다. 중위 단구의 A1층은 갈색(10YR 4/3)의 미사질토양이고 발달도가 낮은 입상구조이며 B1층은 황갈색(10YR 5/8)의 사질식양토로 아각괴상구조이다. 고위단구의 A1층은 옅은 적갈색(5YR 4/3)의 미사질양토 내지 황갈색(10YR 5/8)의 미사질식토로 발달도가 낮은 아각괴상구조이다. B1층은 적색(2.5YR 3/6)의 사질식토 내지 밝은 적갈색(2.5YR 4/6)의 식양토로 발달도가 양호한 아각괴상구조이다. 고위단구 퇴적층을 모재로 발달한 토양의 구조는 중정도의아각괴상구조이고 조직이 치밀하다. 토양은 A1층, B1층,B2층으로 되어 있으며 또한 B층은 점토가 집적되어 있고 점토 피막이 나타난다. 쌍천의 중위단구상에 발달한 토양은 황갈색토이고 고위 단구상의 토양은 적색토이다. 고위단구 퇴적물을 모재로 발달한 본 적색토는 생성시가가 민델-리스 간빙기의 이전에 생성된 것으로 현재보다 온난한 생물-기후 조건하에서 탈규산화를 동반하는 적색토화작용에 의해 형성된 것으로 추정된다. 고위단구에 발달한 적색토는 토양단면의 형태적 및 물리 화학적인 특성등으로 보아 고적색토로 분류된다.

  • PDF

The Last Interglacial Sea Levels Estimated from the Morphostratigraphic Comparison of the Late Pleistocene Fluvial Terraces in the Eastern Coast of Korea (한국 동해안에 있어서 최종간빙기의 구정선고도 연구 후기 경신세 하성단구의 지형층서적 대비의 관점에서)

  • 최성길
    • The Korean Journal of Quaternary Research
    • /
    • v.7 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The estimation of the Last Interglacial sea level was made by using the thalassostatic terrace which had been developed in the lower reach of Namdaechon river in Kangneung, eastern coastal area of Korea. The fluvial terraces, which have been developed since late Pleistocene, were investigated. The main findings were as follows; 1) That Kangneung terrace I had been formed in the climax period of the Last Interglacial (Oxygen isotope stage 5e) was revealed. It was estimated that Kangneung terrace II had been formed during a certain warmer period between the climax period of the Last Interglacial and the early Last Glacial(probably Oxygen isotope stage 5c or 5a). 2) Being judged from the relative heights of the Kangneung terrace I and II, the sea levels of the formation periods of these terraces were estimated to have been relatively 17~20m and l0m higher than the present sea level, respectively. 3) The formation periods of the Wangsan terrace I and II were supposed to be the early and late Last Glacial respectively, being judged from the following 3 details ; a) the characteristics of the terrace deposits, b) the relation Wangsan terrace II to the buried valley floor, and c) the cross phenomena of the above two terraces to the Kangneung terraces. 4) The formation period of the pseudogleyed red soil in the Kangneung terrace I was estimated to be the middle or late period of the Last Interglacial.

  • PDF

Concepts and Geomorphic Properties on Fluvial Terraces (하안단구의 개념과 지형 특성)

  • Lee, Gwang-Ryul
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • To reinterpret the meaning of fluvial terraces in the Quaternary researches, the concepts and geomorphic properties of fluvial terraces are reviewed. Fluvial terraces are the alluvial landform that was once river channel or floodplain by paleochannel flowed in elevated areas from the current river by active incision of rivers due to the climatic changes and/or uplifts. As fluvial terraces are the remnants of alluviums after incisions of rivers, the major factors influencing on the incisions are the falling of erosion base, increase of river discharge and distinct geomorphic phenomenon of river. While it is generally known that fluvial terraces deposits in the upper or middle reaches of large rivers were formed during glacial periods, the deposits may be formed at the various periods due to the diverse natural environments and geomorphic properties of specific rivers, because there have been numerous cases that the ages of fluvial terraces in the upper or middle reaches of large rivers in Korea and China can be correlated to the interglacial periods.

  • PDF

Geomorphic Processes of the Terraces at Lower Reach of Yeongpyeong River in Chugaryeong Rift Valley, Central Korea (추가령 열곡 영평천 하류 단구지형의 형성과정)

  • Lee, Min-Boo;Lee, Gwang-Ryul;Kim, Nam-Shin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.6 s.111
    • /
    • pp.716-729
    • /
    • 2005
  • In the Yeongpyeong River, one of the branches of Hantan River, there 4 fluvial terraces are identified. During the Quaternary, lava flow from Hantan River had gone 4.5km into upstream Part of the Yeongpyeong River and damed its entrance, and resultantly its lower basin had become a lava-damed paleolake. This study deals with fluvial terrace surface classification, stratigraphic analysis, deposits analysis, and OSL age dating in from Gungpyeongri to Seongdongri in lower reach of Yeongpyeong River, in order to identify Seomorphological Process of the terrace landforms relating to duration of lava-damed paleolake. Terrace surface T4, named Baekeuiri Formation, has been located under Jeongok lava layer to indicate pre-lava river bed. Terrace surfaces T3 and T2 are supposed to be formed during paleolake time, based on $3{\~}4m$ thick sand deposits including pebble and cobble layers, and clay and silt layers intersected with sand ones in nearly horizontal bedding. Terrace T1 is estimated to be formed as post-lake fluvial terrace after dissection of lava dam, based on the more fresh phase of deposits and very low height from present riverbed. The results of the OSL age dating for the T3 deposit layers indicate approximately $33{\~}40ka$, and still lake phase at that time.

Geomorphic Development of Tucson and Chiricahua in Arizona, U.S.A (미국 아리조나 투산과 치리카와 지역의 지형발달)

  • PARK, Heui Doo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • This studied area is divided into the mountains and the valleys. The former is nearly consisted of the badland, the latter is consisted of alluvial plains in the valley, fluvial terrace at the side of the river, alluvial fans between mountains and river terrace. There are many tors, mushroom rocks, sugarloaves, weathering pits, castle coppies, columnar rocks, pinnacles, balanced rocks carved on tuff by means of erosion in the Chiricahua Nat'l Monument. Willcox Playa is alkalic crust where was lake in pleistocene epoch at the time wetter than present. Alkalic crust was made of Ca, Na, K etc. There are sand dunes around here where was lake side in the past. We found many kinds of fossils at the 2,000ft thick horizons of valley alluvium. Pediment and alluvium bordered at the base of Mt. Dragoon wavily. Exfoliation and spalling and sheeting resulted in boulders around here. Tucson is alluvial plain filled in thick 7,0000ft valley. Volcano, fault, erosion, alluvium were and are processing in this area.

Researches on fluvial terraces in Korea (한국의 하안단구 연구)

  • LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.17-33
    • /
    • 2011
  • This study summarizes the research history of fluvial terraces in Korea and examines the geomorphic properties of fluvial terraces in Korea based on the previous works. The research history of fluvial terraces in Korea can be divided into the three periods. The theories of fluvial terraces were spread by the early geomorphologists during the period of Japanese colonial era to mid-1980s. The dissertations on the fluvial terraces were intensively published during the late 1980s to 1990s and their discussions were the center of geomorphology researches in Korea. Since 2000s, the discussions have become more mature and researches have been quantitatively increased as the various methodologies have been developed. The fluvial terraces in Korea are mostly developed in the western and eastern parts of the Taebaek Mountains, upper and middle reaches of Han and Nakdong River, and in the western slopes of Sobaek Mountains, middle reaches of Namhan River, upper and middle reaches of Geum and Seomjin River. Along these rivers in actively uplifted areas, fluvial terraces with much higher altitude from riverbed are observable and incision rates are relatively high. In the sense of the formation ages, they have developed in not regular patterns by the climatic changes during the Quaternary, but in more complicated aspects by the environmental conditions such as climate, hydrology, geology and geomorphology in the specific drainage basins.

Quaternary Sea Levels Estimated from River Terraces of the Ungcheon River, Midwestern Coast of South Korea (態川川流域의 河成段丘로부터 推定되는 舊汀線高度와 그 意義, 韓國 西海岸의 第四紀 環境變化 究明에 있어서 臨海山岳地域 小河川 河成段丘 硏究의 重要性 考察)

  • Choi, Seong-Gil
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.3
    • /
    • pp.613-629
    • /
    • 1996
  • River terraces of glacial and interglacial periods are most developed in the Ungcheon River, midwestern coastal region of south Korea. Among these terraces, interglacial river terraces correspond to the thalassostatic terraces of eastern coastal region of Korea. Thus the former shoreline altitudes of the coastal region around Ungcheon River can be estimated by using relative heights of these interglacial thalassostatic terraces of Ungcheon River The former shoreline altitudes estimated from interglacial thalassostatic terraces of Ungcheon River are 80m, 50${\sim}$60m, 40${\sim}$45m, 30m, 25m(?), 15${\sim}$20m, and 10m. These estimates are almost identical with those of Quaternary sea levels of eastern coastal region. Among the above estimates of Ungcheon River, the former shoreline altituded of 15~20m and 10m correspond to the ancient sea levels of $\pm$18m and $\pm$10m of eastern coastal region which were injudged as the last interglacial culmination period and late warmer period of the last interglacia(5e and 5a substages of oxygen isotope stage), respectively. Therefore there is a possibility that the rest of the above former shoreline altitudes of the coastal region aroune Jngcheon River also correspond to those of eastern coastal region. On the basis of the above possibility it can be proposed that the eastern and western coastal region of Korean Peninsula have undergone tectonic uplift of equall amount since the middle Quaternary Period.

  • PDF

Palaeoenvironmental Implication of the Quaternary Gravel Sequences on the Basis of Gravel Shape (역의 형태에 의한 제4기 역층준의 고환경적 고찰)

  • Ju Yong Kim;Duck Keun Choi
    • The Korean Journal of Quaternary Research
    • /
    • v.4 no.1
    • /
    • pp.41-57
    • /
    • 1990
  • Gravel shapes of the terrace gravel sequences are compared with the present river gravels and beach gravels in the Pohang and its surrounding areas. Seventeen gravel textural parameters are divided into 5 groups based on R-mode factor analysis. Among them, three parameters (RDm, MPSm, SZstd) are selected for a test of discriminant possibility of palaeoenvironment of the terrace gravel deposits. Marine gravels are in the range of 0.49 to 0.75 in mean roundness, 0.46 to 0.78 in mean maximum projection sphericity and 0.39 to 1.85 in standard deviation of size, whereas river gravels are 0.28 to 0.51 in mean roundness, 0.66 to 0.72 in mean maximum projection sphericity and 1.04 to 1.81 in standard deviation of size. For practical access to the palaeoenvironment discrimination, a bivariant diagram between mean roundness and mean maximum projection sphericity is the most effective. The marine terrace gravels are plotted within the variation range of present beach gravels and show 0.49 to 0.71 in mean roundness and 0.59 to 0.66 in mean maximum projection sphericity. The gravels of river terrace vary within the range of gravels derived from present river bed and are characterized as 0.36 to 0.48 in mean roundness and 0.66 to 0.71 in mean maximum projection sphericity.

  • PDF

Paleo-red Soil on the High Fluvial Surface in the Middle Basin of Nam-Han River (남한강 중류 하성고위면의 고적색토)

  • Kang, Young-Pork;Lee, Sang-Min
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.828-835
    • /
    • 2005
  • The purpose of this study is to clarify the landform development of fluvial terrace and the soil characteristics occurring on the terrace deposit. In order to achieve the purpose, the characteristics of soil profiles, the physic-chemical properties of soils that are developed on terrace deposits and X-ray diffraction analysis of clay were investigated. The horizon of Al in the high fluvial surface is silt clay loam of red (2YR 4/6). The soil structure is a developed granular structure. The horizon of B1 is silt clay reddish-brown (2.5YR 4/6). The soil structure is a medium subangular blocky structure. This red soil structure is made on heavy textured and compactly packed parent materials of high terrace sediments and usually has A-B-C profile. In most cases, clay accumulations in B-horizon and clay cutans on ped surfaces are observed, which mean the formation of agrillic horizon. As the result of this study, soils derived from fluvial terrace deposits on high fluvial surfaces are considered paleo-red soil which were developed by pedogenese-strong desilicification and rubefaction and strong leaching of bases- under warmer bio-climatic condition during in the old Pleistocene period.