• Title/Summary/Keyword: 하드웨어 합성

Search Result 453, Processing Time 0.026 seconds

(An Integrated Development Environment for Automatic Design and Implementation of FLC) (퍼지 제어기의 설계 및 구현 자동화를 위한 통합 개발 환경)

  • 조인현;김대진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.151-156
    • /
    • 1997
  • 본 논문은 저비용이면서 정확한 제어를 수행하는 새로운 퍼지 제어기의 VHDL 설계 및 FPGA 구현을 자동적으로 수행하는 통합 개발 환경(IDE : Integrated Development Environment)을 다룬다. 이를 위해 FLC의 자동 설계 및 구현의 전 과정을 하나의 환경 내에서 개발 가능하게 하는 퍼지 제어기 자동 설계 및 구현 시스템 (FLC Automatic Design and Implementation Station :FADIS)을 개발하였는데 이 시스템은 다음 기능을 포함한다. (1) 원하는 퍼지 제어기의 설계 파라메터를 입력받아 이로부터 FLC를 구성하는 각 모듈의 VHDL 코드를 자동적으로 생성한다. (2) 생성된 각 모듈의 VHDL 코드가 원하는 동작을 수행하는지를 Synopsys사의 VHDL Simulator상에서 시뮬레이션을 수행한다. (3) Synopsys사의 FPGA Compiler에 의해 VHDL 코드를 합성하여 FLC의 각 구성 모듈을 얻는다. (4) 합성된 모듈은 Xilinx사의 XactSTep 6.0에 의해 최적화 및 배치, 배선이 이루어진다. (5) 얻어진 Xilinx rawbit 파일은 VCC사의 r2h에 의해 C 언어의 header 파일 형태의 하드웨어 object로 변환된다. (6) 하드웨어 object를 포함하는 응용 제어 프로그램의 실행 파일을 재구성 \ulcorner 능한 FPGA 시스템 상에 다운로드한다. (7) 구현된 FLC의 동작 과정은 구현된 FLC와 제어 target 사이의 상호 통신에 의해 모니터링한다. 트럭 후진 주차 제어에 사용하는 퍼지 제어기 설계 및 구현의 전 과정을 FADIS상에서 수행하여 FADIS가 완전하게 동작하는지를 확인하였다.

  • PDF

Hardware Implementation of Elliptic Curve Scalar Multiplier over GF(2n) with Simple Power Analysis Countermeasure (SPA 대응 기법을 적용한 이진체 위의 타원곡선 스칼라곱셈기의 하드웨어 구현)

  • 김현익;정석원;윤중철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.73-84
    • /
    • 2004
  • This paper suggests a new scalar multiplication algerian to resist SPA which threatens the security of cryptographic primitive on the hardware recently, and discusses how to apply this algerian Our algorithm is better than other SPA countermeasure algorithms aspect to computational efficiency. Since known SPA countermeasure algorithms have dependency of computation. these are difficult to construct parallel architecture efficiently. To solve this problem our algorithm removes dependency and computes a multiplication and a squaring during inversion with parallel architecture in order to minimize loss of performance. We implement hardware logic with VHDL(VHSIC Hardware Description Language) to verify performance. Synthesis tool is Synplify Pro 7.0 and target chip is Xillinx VirtexE XCV2000EFGl156. Total equivalent gate is 60,508 and maximum frequency is 30Mhz. Our scalar multiplier can be applied to digital signature, encryption and decryption, key exchange, etc. It is applied to a embedded-micom it protects SPA and provides efficient computation.

A Design on the Wavelet Transform Digital Filter for an Image Processing (영상처리를 위한 웨이브렛 변환 디지털 필터의 설계)

  • Kim, Yun-Hong;Jeon, Gyeong-Il;Bang, Gi-Cheon;Lee, U-Sun;Park, In-Jeong;Lee, Gang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.3
    • /
    • pp.45-55
    • /
    • 2000
  • In this paper, we proposed the hardware architecture of wavelet transform digital filter for an image processing. Filter bank pyramid algorithm is used for wavelet transform and each fillet is implemented by the FIR filter. For DWT computation, because the memory controller is implemented by hardware, we can efficiently process the multisolution decomposition of the image data only input the parameter. As a result of the image Processing in this paper, 33㏈ PSNR has been obtained on 512$\times$512 B/W image due to 11-bit mantissa processing in FPGA Implementation. And because of using QMF( Quadrature Mirror Filter) properties, it reduces half number of the multiplier needed DWT(Discrete Wavelet Transform) computation so the hardware size is reduced largely. The proposed scheme can increase the efficiency of an image Processing as well as hardware size reduced. The hardware design proposed of DWT fillet bank is synthesized by VHDL coding and then the test board is manufactured, the operating Program and the application Program are implemented using MFC++ and C++ language each other.

  • PDF

A Lightweight Hardware Accelerator for Public-Key Cryptography (공개키 암호 구현을 위한 경량 하드웨어 가속기)

  • Sung, Byung-Yoon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1609-1617
    • /
    • 2019
  • Described in this paper is a design of hardware accelerator for implementing public-key cryptographic protocols (PKCPs) based on Elliptic Curve Cryptography (ECC) and RSA. It supports five elliptic curves (ECs) over GF(p) and three key lengths of RSA that are defined by NIST standard. It was designed to support four point operations over ECs and six modular arithmetic operations, making it suitable for hardware implementation of ECC- and RSA-based PKCPs. In order to achieve small-area implementation, a finite field arithmetic circuit was designed with 32-bit data-path, and it adopted word-based Montgomery multiplication algorithm, the Jacobian coordinate system for EC point operations, and the Fermat's little theorem for modular multiplicative inverse. The hardware operation was verified with FPGA device by implementing EC-DH key exchange protocol and RSA operations. It occupied 20,800 gate equivalents and 28 kbits of RAM at 50 MHz clock frequency with 180-nm CMOS cell library, and 1,503 slices and 2 BRAMs in Virtex-5 FPGA device.

An Implementation on the Computing Algorithm for Inverse Finite Field using Composite Field (합성체를 이용한 유한체의 역원 계산 알고리즘 구현)

  • Noh Jin-Soo;Rhee Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.76-81
    • /
    • 2006
  • Recently, Finite field is applied the cryptography in the modern multimedia communication. Especially, block codes such as Elliptic Curve Cryptosystem and Reed-Solomon code among the error correcting codes are defined with finite field. Also, finite field algorithm is conducting the research actively because many kind of application parts need the real time operating ability therefore the exclusive hardware have been implementing. In this paper, we proposed the inverse finite field algorithm over GF($2^8$) using finite composite field and implemented in a hardware, and then compare this hardware with the currently used 'Itoh and Tsujii' hardware in respect to structure, area and computation time. Furthermore, this hardware was inserted into the AES SubBytes block and implemented on FPGA emulator board to confirm that the superiority of the proposed algorithm through the performance evaluation.

A VLSI Architecture Design of CDMA/TDMA Modem Chipsets for Wireless Telemetry Systems (CDMA/TDMA 기반 무선 원격계측 시스템용 모뎀의 VLSI 구조 설계)

  • 이원재;이성주;이서구;정석호;김재석
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.107-114
    • /
    • 2004
  • In this paper, we present the architecture design of CDMA/TDMA modem chipset for wireless telemetry system. The wireless telemetry system a measuring data collecting system from many RTs(Remote Terminal) installed at the specific area using wireless communication technology. It consists of CU single CU (Central Unit) for collecting data and a large amount of RTs for transmitting the measuring data. We propose the hardware architecture of the modem for RT and CU. We also design those modem using Verilog HDL and synthesis them using Synopsys$^{TM}$ CAD tool. The modem of RT is implemented with 27K gates and that of CU is implemented around 220k gates using 0.6${\mu}{\textrm}{m}$ CMOS standard cell. The proposed system is implemented and tested using Altera$^{TM}$ FPGA.PGA.

Design of Multiplierless Lifting-based Wavelet Transform using Pattern Search Methods (패턴 탐색 기법을 사용한 Multiplierless 리프팅 기반의 웨이블릿 변환의 설계)

  • Son, Chang-Hoon;Park, Seong-Mo;Kim, Young-Min
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.943-949
    • /
    • 2010
  • This paper presents some improvements on VLSI implementation of lifting-based 9/7 wavelet transform by optimization hardware multiplication. The proposed solution requires less logic area and power consumption without performance loss compared to previous wavelet filter structure based on lifting scheme. This paper proposes a better approach to the hardware implementation using Lefevre algorithm based on extensions of Pattern search methods. To compare the proposed structure to the previous solutions on full multiplier blocks, we implemented them using Verilog HDL. For a hardware implementation of the two solutions, the logical synthesis on 0.18 um standard cells technology show that area, maximum delay and power consumption of the proposed architecture can be reduced up to 51%, 43% and 30%, respectively, compared to previous solutions for a 200 MHz target clock frequency. Our evaluation show that when design VLSI chip of lifting-based 9/7 wavelet filter, our solution is better suited for standard-cell application-specific integrated circuits than prior works on complete multiplier blocks.

A Design of Pipeline Chain Algorithm Based on Circuit Switching for MPI Broadcast Communication System (MPI 브로드캐스트 통신을 위한 서킷 스위칭 기반의 파이프라인 체인 알고리즘 설계)

  • Yun, Heejun;Chung, Wonyoung;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.795-805
    • /
    • 2012
  • This paper proposes an algorithm and a hardware architecture for a broadcast communication which has the worst bottleneck among multiprocessor using distributed memory architectures. In conventional system, The pipelined broadcast algorithm is an algorithm which takes advantage of maximum bandwidth of communication bus. But unnecessary synchronization process are repeated, because the pipelined broadcast sends the data divided into many parts. In this paper, the MPI unit for pipeline chain algorithm based on circuit switching removing the redundancy of synchronization process was designed, the proposed architecture was evaluated by modeling it with systemC. Consequently, the performance of the proposed architecture was highly improved for broadcast communication up to 3.3 times that of systems using conventional pipelined broadcast algorithm, it can almost take advantage of the maximum bandwidth of transmission bus. Then, it was implemented with VerilogHDL, synthesized with TSMC 0.18um library and implemented into a chip. The area of synthesis results occupied 4,700 gates(2 input NAND gate) and utilization of total area is 2.4%. The proposed architecture achieves improvement in total performance of MPSoC occupying relatively small area.

Novel Hardware Architecture of Fast Searcher for Wideband CDMA Wireless Local Loop System (광대역 CDMA 무선 가입자망 시스템용 고속 탐색기의 새로운 하드웨어 구조)

  • 조용권;이성주;김재석
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.10
    • /
    • pp.39-46
    • /
    • 1999
  • In this paper, we propose new hardware architecture of a fast searcher for an initial code acquisition in wideband CDMA wireless local loop systems. The proposed searcher uses double-dwell serial search algorithm and has N active correlators for the high performance code acquisition. Since the N active correlators are designed with pipelined architecture, it is possible to reduce the hardware complexity with only one energy calculation. Our architecture is designed using VHDL to meet wideband CDMA wireless local loop standard and verified under JTC wideband channels. Average code acquisition time of the proposed fast searcher which has 16 correlators is about 40 seconds in case of initial installation and 0.16 seconds when a base station is known. The verified fast searcher is synthesized with in $0.6\mu\textrm{m}$ LG library. The synthesized searcher has 15.8K rates when the number of 4he correlators is 16.

  • PDF

Hardware Design and Implementation of Joint Viterbi Detection and Decoding Algorithm for Bluetooth Low Energy Systems (블루투스 저전력 시스템을 위한 저복잡도 결합 비터비 검출 및 복호 알고리즘의 하드웨어 설계 및 구현)

  • Park, Chul-hyun;Jung, Yongchul;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.838-844
    • /
    • 2020
  • In this paper, we propose an efficient Viterbi processor using Joint Viterbi detection and decoding (JVDD) algorithm for a for bluetooth low energy (BLE) system. Since the convolutional coded Gaussian minimum-shift keying (GMSK) signal is specified in the BLE 5.0 standard, two Viterbi processors are needed for detection and decoding. However, the proposed JVDD scheme uses only one Viterbi processor by modifying the branch metric with inter-symbol interference information from GMSK modulation; therefore, the hardware complexity can be significantly reduced without performance degradation. Low-latency and low-complexity hardware architecture for the proposed JVDD algorithm was proposed, which makes Viterbi decoding completed within one clock cycle. Viterbi Processor RTL synthesis results on a GF55nm process show that the gate count is 12K and the memory unit and the initial latency is reduced by 33% compared to the modified state exchange (MSE).