하둡 맵리듀스(MapReduce)는 사용자가 요청한 잡을 하둡 클러스터에서 효과적으로 병렬 분산 처리하기 위한 프레임워크이다. 맵리듀스의 태스크 스케쥴러는 사용자의 잡 태스크들을 여러 노드에 할당하기 위한 기법이다. 하지만, 기존의 스케쥴러는 노드의 가용 상태에 따라 규모가 동적으로 변화하는 하둡 클러스터를 고려하지 않음으로써 클러스터의 자원을 충분히 활용하지 못하는 문제가 있다. 본 논문에서는 노드의 가용성을 고려하여 잡 태스크를 효과적으로 할당함으로써 하둡 클러스터의 활용성을 높이는 태스크 할당 정책을 제시한다.
급속한 비대면 환경과 모바일 우선 전략에 따라 해마다 많은 정형/비정형 데이터의 폭발적인 증가와 생성은 모든 분야에서 빅데이터를 활용한 새로운 의사 결정과 서비스를 요구하고 있다. 그러나 매년 급속히 증가하는 빅데이터를 활용하여 실무 환경에서 적용 가능한 표준 플랫폼으로 빅데이터를 수집하여 적재한 후, 정재한 빅데이터를 관계형 데이터베이스에 저장하고 처리하는 하둡 에코시스템 활용의 참조 사례들은 거의 없었다. 따라서 본 연구에서는 스프링 프레임워크 환경에서 3대의 가상 머신 서버를 통하여 하둡 2.0을 기반으로 쇼셜 네트워크 서비스에서 키워드로 검색한 비정형 데이터를 수집한 후, 수집된 비정형 데이터를 하둡 분산 파일 시스템과 HBase에 적재하고, 적재된 비정형 데이터를 기반으로 형태소 분석기를 이용하여 정형화된 빅데이터를 관계형 데이터베이스에 저장할 수 있게 설계하고 구현하였다. 향후에는 데이터 심화 분석을 위한 하이브나 머하웃을 이용하여 머신 러닝을 이용한 클러스터링과 분류 및 분석 작업 연구가 지속되어야 할 것이다.
하둡은 오픈소스 기반의 분산 데이터 처리 프레임워크로서 과학 및 상용 분야에서 널리 사용되고 있는데 최근에 대규모 데이터의 실시간 처리 및 분석을 위해 고성능 컴퓨팅(HPC) 기술을 활용하여 하둡을 고성능화하기 위한 연구가 시도되고 있다. 본 논문에서는 하둡의 기본 파일시스템 구현인 하둡 분산파일시스템(HDFS)을 고성능 병렬 분산파일시스템인 러스터 파일시스템으로 대체하여 사용할 수 있도록 하둡 파일시스템 라이브러리를 확장하여 구현하였고 하둡이 제공하는 표준 벤치마크 도구를 사용하여 성능을 분석하였다. 실험 결과 러스터 파일시스템 기반으로 하둡 맵리듀스 응용을 수행하는 경우에 2-13배의 성능 향상이 있음을 확인할 수 있었다.
최근 기계학습 방법을 도입하여 센서 노드에 대한 위치를 파악하는 방법이 관심을 받고 있다. 많은 기계학습 알고리즘 중, 지지벡터머신은 프로그래밍 언어로 구현하기 간편하고, 병렬로 수행이 가능하다. 본 논문에서는 파이썬 프로그래밍 언어로 지지벡터머신을 구현하고, 5대의 라즈베리파이를 사용하여 실험적인 하둡 센서 네트워크와 5개의 노드를 가진 맵리듀스 하둡 소프트웨어 프레임워크를 구성하였다. 기존 지지벡터머신 알고리즘을 분산 처리가 가능하도록 변형하여 위치 측정을 수행하였고, 다양한 파라미터를 변경해가면서 센서 네트워크를 구성하여 효율성, 자원분배, 처리속도를 비교하였다.
과학 응용 분야에서 생성되는 대규모의 데이터를 빠른 시간 내에 효율적으로 처리해야 할 필요성이 대두 되면서 클라우드 컴퓨팅이 주목받고 있다. 하둡(Hadoop)은 대규모 데이터 처리 분석을 위한 소프트웨어 프레임워크를 제공하는 아파치의 오픈소스 프로젝트로서 클라우드 컴퓨팅의 대표적인 기술로서 널리 사용되고 있다. 특히, 하둡은 높은 확장성과 성능을 제공하면서 결함 탐지와 자동 복구 기능이 우수하여 과학 기술 분야에서도 점차적으로 도입 및 활용되고 있다. 본 논문에서는 하둡을 이용하여 천문 응용 분야에서 생성되는 대규모 데이터를 분석하기 위한 방법을 연구하였다. 본 논문에서 관심을 가지는 천문 응용 데이터는 대략 천만개의 작은 크기의 관측 데이터를 처리해야 하지만, 하둡은 대규모 데이터 처리에 특화되어 있어서 많은 개수의 작은 크기를 가지는 관측데이터 처리에는 적합하지 않다. 본 논문에서는 천문 응용 데이터 처리를 위한 입출력 파일을 하둡에서 제공하는 특수화된 데이터 구조를 이용하여 압축하였고, 천문 응용 실행 코드가 하둡에서 실행이 가능하도록 맵리듀스 작업으로 랩핑하여 구현하였다.
스마트폰이 보급되어 빅 데이터(Big Data) 시대를 맞이하였고, 페이스북(FaceBook)이나 트위터(Twitter)같은 SNS(Social Network Service)를 실생활에서 일상화되어 사용하고 있다. 여기서 발생하는 SNS의 비정형 데이터를 버리지 않고 분석 및 추출하고 활용하기 위해서 아파치 재단에서 개발된 하둡(Hadoop)을 활용하고 있다. 하둡은 대량의 자료를 처리할 수 있는 오픈 소스 프레임워크(Open Source Framework)이다. 하둡은 국내의 기업에서도 도입하고 있으며 현재 개발 및 상용하고 있다. 그러나 하둡은 기술 개발에 비해 보안 분야는 미흡하다는 지적을 받고 있다. 이에 본 논문에서는 하둡의 보안 기술과 취약점을 분석하고 보안을 향상시키는 방법을 제안한다.
하둡 시스템은 대용량의 데이터를 처리할 수 있는 클러스터 기반 개방형 소프트웨어 프레임워크이다. 이는 하둡 분산 파일시스템(HDFS)과 MapReduce 모델을 활용하여 데이터의 병렬 처리를 지원한다. 본 연구에서는 3D 프린터를 위한 3D 모델 데이터를 G-code로 변환하는 알고리즘을 하둡을 활용하여 구현하였다. 4대의 컴퓨터에 하둡 시스템을 설치한 후 전처리-Map-Shuffling-Reduce의 과정을 거쳐 변환작업이 효율적으로 처리하였음을 보일 수 있었다.
최근 스마트폰 기기의 보급 및 소셜 서비스 산업의 고도화로 인해, 빅데이터가 등장하였다. 한편 빅데이터에서 효율적으로 정보를 분석하는 대표적인 플랫폼으로 하둡이 존재한다. 하둡은 클러스터 환경에 기반한 우수한 확장성, 장애 복구 기능 및 사용자가 기능을 정의할 수 있는 맵리듀스 프레임워크 등을 지원한다. 아울러 하둡은 개인정보나 위치 데이터 등의 민감한 정보를 보호하기 위해 Kerberos를 통한 사용자 인증 기법을 제공하고, HDFS 압축 코덱을 활용한 AES 코덱 기반 데이터 암호화를 지원하고 있다. 그러나 하둡 기반 소프트웨어를 사용하고 있는 국내 기관 및 기업은 국내 ARIA 데이터 암호화를 적용하지 못하고 있다. 이를 해결하기 위해 본 논문에서는 하둡을 기반으로 ARIA 암호화를 지원하는 HDFS 데이터 암호화 기법을 제안한다.
최근 기계학습 방법을 도입하여 센서 노드에 대한 위치를 파악하는 방법이 관심을 받고 있다. 많은 기계학습 알고리즘 중, 지지벡터머신은 프로그래밍 언어로 구현하기 간편하고, 병렬로 수행이 가능하다. 라즈베리파이는 작고 기능이 많아 센서 노드로 사용 시 인터넷 프로토콜을 사용하는 하둡 네트워크 클러스터 구성이 가능하다. 본 논문에서는 파이썬 프로그래밍 언어로 지지벡터머신을 구현하고, 5대의 라즈베리파이를 사용하여 실험적인 하둡 센서 네트워크와 5개의 노드를 가진 맵리듀스 하둡 소프트웨어 프레임워크를 구성하였다. 실험에서 우리는 다양한 파라미터를 변경해가면서 센서 네트워크를 구성하여 효율성, 자원분배, 처리속도를 비교하였다. 라즈베리파이의 컴퓨팅 파워와 메모리 용량은 부족했지만, 센서 클러스터의 노드 멤버의 역할을 충분히 수행하였고, 지지벡터머신 기계학습을 사용하여 센서 노드의 위치측정을 성공적으로 수행하였다.
최근 스마트폰 사용이 증가하면서 빅 데이터 서비스를 제공하는 클라우드 컴퓨팅 기술이 발달하고 있으며, 빅 데이터 서비스를 제공받으려는 사용자 또한 증가하고 있다. 빅 데이터 서비스 중 하둡 프레임워크는 데이터 집약적인 분산 어플리케이션을 지원하는 하둡 파일 시스템과 하둡 맵리듀스로 서비스를 제공하고 있으나, 하둡 시스템을 이용하는 스마트폰 서비스는 데이터 인증시 보안에 매우 취약한 상태이다. 본 논문에서는 스마트폰 서비스를 제공하는 하둡 시스템의 초기 과정의 인증 프로토콜을 제안한다. 제안 프로토콜은 하둡 시스템의 안전한 다중 데이터 처리를 지원하기 위해서 대칭키 암호 기술과 함께 ECC 기반의 알고리즘을 조합하였다. 특히, 제안 프로토콜은 사용자가 하둡 시스템에 접근하여 데이터를 처리할 때, 초기 인증키를 대칭키 대신 타원 곡선 기반의 공개키를 사용함으로써 안전성을 향상시켰다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.