• Title/Summary/Keyword: 하둡 맵리듀스 프레임워크

Search Result 37, Processing Time 0.022 seconds

Processing Method of Mass Small File Using Hadoop Platform (하둡 플랫폼을 이용한 대량의 스몰파일 처리방법)

  • Kim, Chang-Bok;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • Hadoop is composed with MapReduce programming model for distributed processing and HDFS distributed file system. Hadoop is suitable framework for big data processing, but processing of mass small files have many problems. The processing of mass small file in hadoop have problems to created one mapper per one file, and it have problems to needed many memory for store of meta information of file. This paper have comparison evaluation processing method of mass small file with various method in hadoop platform. The processing of general compression format is inadequate because of processing by one mapper regardless of data size. The processing of sequence and hadoop archive file is removed memory problem of namenode by compress and combine of small file. Hadoop archive file is faster then sequence file about combine time of small file. The processing using CombineFileInputFormat class is needed not combine of small file, and it have similar speed big data processing method.

Security Threats and Review for SQL on Hadoop (SQL on Hadoop 기술 동향 및 보안 위협)

  • Youn, Han Jung;Suk, Sang Kee
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.691-693
    • /
    • 2015
  • SQL on Hadoop 기술은 하둡 분산 파일 시스템에 저장된 데이터를 대상으로 SQL을 이용하여 사용자의 질의를 처리하는 기술이다. 기존의 Hadoop 시스템이 맵리듀스의 한계와 기존 시스템의 호환성으로 인해 RDBMS와 병행사용이 불가피하다는 단점을 SQL을 이용해 극복하고자 하는 것이다. 본 논문에서는 SQL on Hadoop의 대표적 프레임워크인 Hive와 Impala의 특징과, 연구동향에 대해 살펴보고 예상되는 보안 위협에 대해 고찰한다.

Design of Spark SQL Based Framework for Advanced Analytics (Spark SQL 기반 고도 분석 지원 프레임워크 설계)

  • Chung, Jaehwa
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.10
    • /
    • pp.477-482
    • /
    • 2016
  • As being the advanced analytics indispensable on big data for agile decision-making and tactical planning in enterprises, distributed processing platforms, such as Hadoop and Spark which distribute and handle the large volume of data on multiple nodes, receive great attention in the field. In Spark platform stack, Spark SQL unveiled recently to make Spark able to support distributed processing framework based on SQL. However, Spark SQL cannot effectively handle advanced analytics that involves machine learning and graph processing in terms of iterative tasks and task allocations. Motivated by these issues, this paper proposes the design of SQL-based big data optimal processing engine and processing framework to support advanced analytics in Spark environments. Big data optimal processing engines copes with complex SQL queries that involves multiple parameters and join, aggregation and sorting operations in distributed/parallel manner and the proposing framework optimizes machine learning process in terms of relational operations.

RDFS Rule based Parallel Reasoning Scheme for Large-Scale Streaming Sensor Data (대용량 스트리밍 센서데이터 환경에서 RDFS 규칙기반 병렬추론 기법)

  • Kwon, SoonHyun;Park, Youngtack
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.686-698
    • /
    • 2014
  • Recently, large-scale streaming sensor data have emerged due to explosive supply of smart phones, diffusion of IoT and Cloud computing technology, and generalization of IoT devices. Also, researches on combination of semantic web technology are being actively pushed forward by increasing of requirements for creating new value of data through data sharing and mash-up in large-scale environments. However, we are faced with big issues due to large-scale and streaming data in the inference field for creating a new knowledge. For this reason, we propose the RDFS rule based parallel reasoning scheme to service by processing large-scale streaming sensor data with the semantic web technology. In the proposed scheme, we run in parallel each job of Rete network algorithm, the existing rule inference algorithm and sharing data using the HBase, a hadoop database, as a public storage. To achieve this, we implement our system and evaluate performance through the AWS data of the weather center as large-scale streaming sensor data.

Structuring of unstructured big data and visual interpretation (부산지역 교통관련 기사를 이용한 비정형 빅데이터의 정형화와 시각적 해석)

  • Lee, Kyeongjun;Noh, Yunhwan;Yoon, Sanggyeong;Cho, Youngseuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1431-1438
    • /
    • 2014
  • We analyzed the articles from "Kukje Shinmun" and "Busan Ilbo", which are two local newpapers of Busan Metropolitan City. The articles cover from January 1, 2013 to December 31, 2013. Meaningful pattern inherent in 2889 articles of which the title includes "Busan" and "Traffic" and related data was analyzed. Textmining method, which is a part of datamining, was used for the social network analysis (SNA). HDFS and MapReduce (from Hadoop ecosystem), which is open-source framework based on JAVA, were used with Linux environment (Uubntu-12.04LTS) for the construction of unstructured data and the storage, process and the analysis of big data. We implemented new algorithm that shows better visualization compared with the default one from R package, by providing the color and thickness based on the weight from each node and line connecting the nodes.

SPARQL Query Processing in Distributed In-Memory System (분산 메모리 시스템에서의 SPARQL 질의 처리)

  • Jagvaral, Batselem;Lee, Wangon;Kim, Kang-Pil;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.42 no.9
    • /
    • pp.1109-1116
    • /
    • 2015
  • In this paper, we propose a query processing approach that uses the Spark functional programming and distributed memory system to solve the computational overhead of SPARQL. In the semantic web, RDF ontology data is produced at large scale, and the main challenge for the semantic web is to query and manipulate such a large ontology with a high throughput. The most existing studies on SPARQL have focused on deploying the Hadoop MapReduce framework, and although approaches based on Hadoop MapReduce have shown promising results, they achieve a low level of throughput due to the underlying distributed file processes. Therefore, in order to speed up the query processes, we suggest query- processing methods that are based on memory caching in distributed memory system. Our approach is also integrated with a clause unification method for propagating between the clauses that exploits Spark join, map and filter methods along with caching. In our experiments, we have achieved a high level of performance relative to other approaches. In particular, our performance was nearly similar to that of Sempala, which has been considered to be the fastest query processing system.

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.