• Title/Summary/Keyword: 하도(河圖)

Search Result 1,475, Processing Time 0.03 seconds

Safety Evaluation Method of Transmission Tower Subjected to Special Load Case According to Broken Wires (전력선 단선으로 인한 이상시 송전철탑의 안전성 평가방법)

  • Jin, Seok Won;Kim, Jong Min;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.131-149
    • /
    • 2008
  • A transmission tower was designed according to general and special load cases based on KEPCO Design Specifications. The special load case such as unbalanced load a cording to some broken wires has not been considered significantly. Therefore, this paper presents investigations on the stability and safety of main post members subjected to unbalanced load and design wind load. In this study, all cases totally considered. From the finite element analyses using LUSAS program, the stresses on the tower subjected to unbalanced load and design wind load were very high in comparison to the allowable stresses of the steel post member that was used. Some of the post member had higher stresses than the yield stress of the steel member. This paper also shows an example to improve the capacity of the post members using increased cross-section members. Based on the analyses results, when investigating the safety of the transmission tower, one must consider thenew design philosophy including ultimate strength of the member and reliability of the special loading cases.

Numerical analysis of the Sediment Pass-Through from Weirs by using CCHE2D (수치모형을 이용한 보의 토사토출 효과 분석)

  • Jang, Chang-Lae;Lee, Kyung-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.534-534
    • /
    • 2012
  • 최근 집중호우 등으로 인하여 유역에 생산된 토사가 하도에 유입되면서 하상 및 지형변동을 일으키고 있으며, 보 및 댐 상류에서 유사의 퇴적으로 인하여 홍수위 변화와 저수지 기능감소 등 많은 변화를 가져오고 있다. 이로 인하여 댐 및 보의 지속적인 유지관리를 위하여 유사관리 방안이 절실하게 요구되고 있다. 본 연구에서는 낙동강에 건설된 상주보와 구미보를 대상으로 CCHE2D모형을 이용하여 보의 상류에 퇴적된 토사의 토출(배출(排出), SPT)효과를 분석하였다. 토사 토출 효과를 예측하기 위하여 2차원 하상변동 수치모형인 CCHE2D를 이용한 하상변동 과정을 모의한 결과, 보 상류에서는 수문을 통과하여 흐르는 유속으로 인하여 하상이 저하 되었으며, 보 하류에서는 상류에서 유입되는 유사량과 지형적인 영향을 받아 세굴과 퇴적이 반복되는 경향을 보였다. 상류에서 2년빈도 유량, $1,500m^3/s$, $1,000m^3/s$, 풍수량으로 48시간 동안 상주보와 구미보로 유입될 때, 수문이 완전히 열린 상태로 있을 경우에, 상주보와 구미보에서 배사효과를 예측하기 위하여 유사 전달(Sediment delivery)을 분석하였다. 상주보와 구미보에서 배사효과를 예측하기 위하여 유사 전달을 분석한 결과, 상주보는 2년빈도 유량인 $3,857m^3/s$로 48시간 동안 상주보로 유입될 때, 보에서 하류로 전달되는 유사량은 약 4,400 tons 정도로 산정되었다. 유량인 $1,500m^3/s$일 때, 약 2,700 tons이 하류로 전달되지만, 최대 유사전달이 발생되는 지점은 보 하류에서 발생하였다. 풍수량 인 $207.4m^3/s$ 일 때, 1,357 tons이 하류로 전달되며, 최대 유사전달이 발생되는 지점은 상주보에서 발생하였다. 구미보는 2년빈도 유량인 $5,400m^3/s$로 48시간 동안 상주보로 유입될 때, 보에서 하류로 전달되는 유사량은 약 3,216 tons 정도로 산정되었다. 유량이 $1,500m^3/s$일 때, 약 73 tons이 하류로 전달되지만, 최대 유사전달이 발생되는 지점은 보에서 발생하였다. 유량인 $1,000m^3/s$일 때, 약 16 tons이 하류로 전달되며, 풍수량 인 $129.7m^3/s$일 때, 28 tons이 하류로 전달되었다. 상주보와 구미보 상류에서는 유사 전달이 감소하여, 유사가 약간 퇴적되는 경향을 보이지만, 전 구간에 걸쳐서 대체적으로 유사 전달이 크게 변하지 않고 있다. 보 상류를 제외하고는 전제적으로 하상고의 변화가 거의 없이 평형 상태를 유지하고 있는 것을 의미한다. 따라서, 상류에서 2년빈도의 홍수량이 유입될 때, 수문을 완전히 개방할 경우에 배사 효과가 크게 있는 것을 알 수 있다.

  • PDF

Numerical simulation of turbidity currents intruding into a reservoir (저수지로 유입되는 부유사 밀도류의 수치모의)

  • Choi, Seongwook;Ban, Chaewoong;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.201-210
    • /
    • 2017
  • This study proposes a numerical model which is able to simulate turbidity currents intruding into a reservoir and resulting sediment depositions. The proposed model is applied to laboratory experiments by Toniolo and Schultz (2005), and propagation of turbidity currents, morphological change, and trap of suspended sediment are simulated. It is simulated that the turbidity current after plunging at the foreset of the model delta, propagates along the bottom. The thickness of the turbidity current increases significantly after being blocked by the dam, and this effect is propagated in the upstream direction. In addition, it is simulated that the foreset moves in the downstream direction due to both the bedload and suspended load and the thickness of the bottom set increases due to the suspended load. It is found that the height of the intake affects the thickness of the turbidity current and the location of the internal hydraulic jump. The impact of the height of the intake on the trap efficiency is not clear in the experimental results, however, overall trap efficiency is predicted quite successfully by the model. Also, sensitivity analysis is carried out, and the results indicates that the particle size affects the trap efficiency most.

Application of exponential bandwidth harmony search with centralized global search for advanced nonlinear Muskingum model incorporating lateral flow (Advanced nonlinear Muskingum model incorporating lateral flow를 위한 exponential bandwidth harmony search with centralized global search의 적용)

  • Kim, Young Nam;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.597-604
    • /
    • 2020
  • Muskingum, a hydrologic channel flood routing, is a method of predicting outflow by using the relationship between inflow, outflow, and storage. As many studies for Muskingum model were suggested, parameters were gradually increased and the calculation process was complicated by many parameters. To solve this problem, an optimization algorithm was applied to the parameter estimation of Muskingum model. This study applied the Advanced Nonlinear Muskingum Model considering continuous flow (ANLMM-L) to Wilson flood data and Sutculer flood data and compared results of the Linear Nonsingum Model incorporating Lateral flow (LMM-L), and Kinematic Wave Model (KWM). The Sum of Squares (SSQ) was used as an index for comparing simulated and observed results. Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS) was applied to the parameter estimation of ANLMM-L. In Wilson flood data, ANLMM-L showed more accurate results than LMM-L. In the Sutculer flood data, ANLMM-L showed better results than KWM, but SSQ was larger than in the case of Wilson flood data because the flow rate of Sutculer flood data is large. EBHS-CGS could be appplied to be appplicable to various water resources engineering problems as well as Muskingum flood routing in this study.

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (I) Long-Term Runoff Analysis (확률론적 중장기 댐 유입량 예측 (I) 장기유출 해석)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.261-274
    • /
    • 2006
  • This study performs a daily long-term runoff analysis for 30 years to forecast medium- and long-term probabilistic reservoir inflows on the Soyang River basin. Snowmelt is computed by Anderson's temperature index snowmelt model and potenetial evaporation is estimated by Penman-combination method to produce input data for a rainfall-runoff model. A semi-distributed TOPMODEL which is composed of hydrologic rainfall-runoff process on the headwater-catchment scale based on the original TOPMODEL and a hydraulic flow routing model to route the catchment outflows using by kinematic wave scheme is used in this study It can be observed that the time variations of the computed snowmelt and potential evaporation are well agreed with indirect observed data such as maximum snow depth and small pan evaporation. Model parameters are calibrated with low-flow(1979), medium-flow(1999), and high-flow(1990) rainfall-runoff events. In the model evaluation, relative volumetric error and correlation coefficient between observed and computed flows are computed to 5.64% and 0.91, respectively. Also, the relative volumetric errors decrease to 17% and 4% during March and April with or without the snowmelt model. It is concluded that the semi-distributed TOPMODEL has well performance and the snowmelt effects for the long-term runoff computation are important on the study area.

The Study on the Development of Flood Prediction and Warning System at Ungaged Coastal Urban Area - On-Cheon Stream in Busan - (미계측 해안 도시 유역의 홍수예경보 시스템 구축 방법 검토 - 부산시 온천천 유역 대상 -)

  • Shin, Hyun-Suk;Park, Yong-Woon;Hong, Il-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.447-458
    • /
    • 2007
  • In this study, the coastal urban flood prediction and warning system based on HEC-RAS and SWMM were investigated to evaluate a watershed of On-Cheon stream in Busan which has characteristics of costal area cased by flooding of coastal urban areas. The basis of this study is a selection of various geological data from the numerical map that is a watershed of On-Cheon stream and computation of hydrologic GIS data. Thiessen method was used for analyzing of rainfall on the On-Cheon stream and 6th regression equation, which is Huff's Type II was time-distribution of rainfall. To evaluate the deployment of flood prediction and warning system, risk depth was used on the 3 selected areas. To find the threshold runoff for hydraulic analysis of stream, HEC-RAS was used and flood depth and threshold runoff was considered with the effect of tidal water level. To estimate urban flash flood trigger rainfall, PCSWMM 2002 was introduced for hydrologic analysis. Consequently, not only were the criteria of coastal urban flood prediction and warning system decided on the watershed of On-Cheon stream, but also the deployment flow charts of flood prediction and warning system and operation system was evaluated. This study indicates the criteria of flood prediction and warning system on the coastal areas and modeling methods with application of ArcView GIS, HEC-RAS and SWMM on the basin. For the future, flood prediction and warning system should be considered and developed to various basin cases to reduce natural flood disasters in coastal urban area.

Seasonal Variations of Water Quality and Periphyton in the Cheonggyecheon (청계천의 수질과 부착조류의 계절적 변동)

  • Shin, Myoung-Sun;Kim, Bom-Chul;Kim, Jai-Ku;Park, Mi-Suk;Jung, Seong-Min;Jang, Chang-Won;Shin, Yoon-Keun;Bae, Yeon-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • The seasonal variations of water quality and periphyton were investigated in an artificial stream (the Cheonggyecheon Stream) flowing through the Seoul City. TP showed a longitudinal gradient: 10 to $59{\mu}gP\;L^{-1}$ in the upper stream sites, and 15 to $90{\mu}gP\;L^{-1}$ in downstream sites. POP was a major form of TP in the water, occupying over 60%, while the proportion of DIP was less than 10% except for St. 4. N/P atomic ratio ranged from 78 to 554, which implies phosphorus would limit algal growth more than nitrogen. The biomass of periphyton did not show much difference among sites, and it was relatively higher in spring and fall season $(10\sim20{\mu}gChl\;{\alpha}cm^{-2})$ and lower in August $(<5{\mu}gChl\;{\alpha}cm^{-2})$, possibly because biofilms were washed off during spates of summer monsoon. Cyanobacteria was the dominant taxon in the periphyton community throughout the year. The periphyton standing crop can be classified as a nuisance level. It seems that phosphorus level is sufficiently high even though the input water is treated chemically, and modest water velocity $(20\sim90cm\;sec^{-1})$ and rocky bottom provide optimal conditions for periphyton growth.

Development of Experimental System for Green Roof System (옥상녹화 효율성 검증실험장비 개발)

  • Park, JaeRock;Kim, SaeBom;Cheon, JongHyeon;Kim, ByungSung;Shin, HyunSuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.495-495
    • /
    • 2017
  • 도시화는 불투수면의 증가를 야기 시켜 물순환 왜곡, 다양한 오염 물질의 유입으로 인한 비점오염물질 유출, 인공 배출열의 증가로 인한 도시열섬효과 등 다양한 문제를 유발한다. 이러한 수리수문학적 및 환경생태학적 문제를 저감하기 위하여 도시지역과 같은 개발 사업에서는 수환경을 가능한 자연 상태로 복원하는 저영향개발(Low Impact Development, LID)기법이 중요한 대안으로 제시되고 있다. LID기법 중 하나인 옥상녹화는 에너지 이용을 최소한으로 한 자연 녹음의 효과적인 이용을 도모하여 환경공생도시 조성과 식물을 매개로한 자연 순환 과정을 도시구조에 도입하여 순환 시스템 재생이 가능 하도록한다. 노지녹화는 두꺼운 자연 토양을 이용하는 반면 옥상녹화는 적재하중의 제약(옥상의 적재하중 조건은 $150{\sim}180kgf/m^2$이다. 비중이 1.6~1.8인 토양을 20cm 객토한 경우, 약 $320kgf/m^2 $이상의 적재하중이 되기에 식재기반의 경량화는 중요한 사안이다.)으로 인해 용적밀도가 작은 인공경량토양 또는 개량토양을 이용하며, 토양 두께도 얇게 설정된다. 또한 토양의 두께는 식물의 크기와 종류 및 토양의 조성에 따라 다르기에 적재하중 조건을 고려한 적절한 토양과 식재 식물의 크기와 종류 결정은 중요하다. 이에 본 연구에서는 옥상녹화식생에 대한 평가와 이에 대한 시험 프로세스가 가능한 실험 장치를 개발하였다. 옥상녹화 효율성 검증실험장비는 1m*1m*0.6m 아크릴 재질의 녹화셀로 경사조절이 가능하도록 설계하여 경사변화에 따른 유출, 침투, 증발산량의 탄성도 모의 평가를 할 수 있다. 또한 4점식 형태의 로드셀을 이용하여 녹화셀에서 발생하는 증발산량을 측정하고 관측된 증발산량은 RS-232c 이상의 통신프로토콜을 사용하여 주기적인 관측치의 송수신이 가능하며 주기적 자료송수신 외에도 옥상 녹화셀의 측면에 하중 표시기를 설치하여 관측이 가능하다. 또한 저면에 바퀴설치를 통하여 이동 실험이 용이하며 현재 부산대학교 양산캠퍼스 한국 GI&LID 실증단지 연구센터 내 옥상녹화 실험장에 옥상녹화 효율성 검증 실험 장비를 설치하여 자연 혹은 인공강우를 통한 유출, 침투, 증발산량의 시험계측을 실시중이다. 이러한 옥상녹화 효율성 검증실험장비는 최대 하중 2,000kg, 측정해상도 0.02kg 이상을 허용하는 로드셀과 녹화셀을 이용하여 하중을 고려한 식생의 종류에 따른 평가가 가능하므로 최적 식재기반 단면구조 개발에 이용될 수 있을 것이다. 또한 토양 함수량 변화 측정으로 옥상녹화에 이용되는 다양한 종류의 식물의 염분에 대한 저항성과 식물의 성장능력을 평가하여 녹화공간에 따른 옥상녹화에 사용할 식생을 결정할 수 있다.

  • PDF

Establishment and Application of Flood Forecasting System for Waterfront Belt in Nakdong River Basin for the Prediction of Lowland Inundation of River. (하천구역내 저지대 침수예측을 위한 낙동강 친수지구 홍수예측체계 구축 및 적용)

  • Kim, Taehyung;Kwak, Jaewon;Lee, Jonghyun;Kim, Keuksoo;Choi, Kyuhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.294-294
    • /
    • 2019
  • The system for predicting flood of river at Flood Control Office is made up of a rainfall-runoff model and FLDWAV model. This system is mainly operating to predict the excess of the flood watch or warning level at flood forecast points. As the demand for information of the management and operation of riverside, which is being used as a waterfront area such as parks, camping sites, and bike paths, high-level forecasts of watch and warning at certain points are required as well as production of lowland flood forecast information that is used as a waterfront within the river. In this study, a technology to produce flood forecast information in lowland areas of the river used as a waterfront was developed. Based on the results of the 1D hydraulic analysis, a model for performing spatial operations based on high resolution grid was constructed. A model was constructed for Andong district, and the inundation conditions and level were analyzed through a virtual outflow scenarios of Andong and Imha Dam.

  • PDF

Sensitivity analysis of flood vulnerability index of levee according to climate change (기후변화에 따른 제방의 홍수취약성지수 민감도 분석)

  • Lee, Hoo Sang;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1161-1169
    • /
    • 2018
  • In this study, a new methodology was proposed to evaluate the flood vulnerability of river levee and to investigate the effect on the levee where the water level changes according to climate change. The stability of levee against seepage was evaluated using SEEP/W model which is two-dimensional groundwater infiltration model. In addition to the infiltration behavior, it is necessary to analyze the vulnerability of the embankment considering the environmental conditions of the river due to climate change. In this study, the levee flood vulnerability index (LFVI) was newly developed by deriving the factors necessary for the analysis of the levee vulnerability. The size of river levee was investigated by selecting the target area. The selected levees were classified into upstream part, midstream part and downstream part at the nearside of Seoul in the Han river, and the safety factor of the levee was analyzed by applying the design flood level of the levee. The safety ratio of the levee was analyzed by applying the design flood level considering the current flood level and the scenario of climate change RCP8.5. The degree of change resulting from climate change was identified for each factor that forms the levee flood vulnerability index. By using the levee flood vulnerability index value utilizing these factors comprehensively, it was finally possible to estimate the vulnerability of levee due to climate change.